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Abstract

Background: Parallel high-throughput microarray and sequencing experiments produce vast quantities of
multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this
challenge is the machine learning technique known as self organizing maps (SOMs). SOMs enable a parallel
sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis
capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce
dimension of high-dimensional data on one hand and practical applications with special emphasis on gene
expression analysis on the other hand.

Results: The method was applied to generate a SOM characterizing the whole genome expression profiles of 67
healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine,
epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the
dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a
minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues
emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed
metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to
pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched
populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally
used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-
noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into
three clusters containing nervous, immune system and the remaining tissues.

Conclusions: The SOM technique provides a more intuitive and informative global view of the behavior of a few
well-defined modules of correlated and differentially expressed genes than the separate discovery of the
expression levels of hundreds or thousands of individual genes. The program is available as R-package ‘oposSOM’.

1. Background
DNA microarray and next generation sequencing tech-
nologies allow researchers to screen ten thousands of
genes for differences in expression between up to hun-
dreds of individuals or experimental conditions of inter-
est. Not only the progressively increasing data
throughput of newest array and sequencing technologies
challenges data analysis methods but also the increasing
availability of large data sets from public data reposi-
tories such as gene expression omnibus (http://www.

ncbi.nlm.nih.gov/geo/) or array express (http://www.ebi.
ac.uk/microarray-as/ae/) with to date hundred thou-
sands of different assays implying large-scale meta-ana-
lyses. These resources pose a challenge how to best
arrange and to visualize the huge heaps of data in a
fashion that enables combination of sample- and gene-
centered views on multidimensional expression data to
capture the global picture of groups of samples while
simultaneously presenting the specific expression pat-
tern within each individual sample.
Self-organizing map (SOM) machine learning was

developed by Kohonen about thirty years ago [1]. It pro-
jects data from the original high dimensional space to
reference vectors of lower dimension. First studies
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applying SOM to microarray gene expression data were
published by Tamayo et al. [2] and Törönen et al. [3].
These and later applications of the SOM method to
expression data emphasized either a gene-centered per-
spective to cluster genes [2] or a sample-centered mode
to map individual samples onto the SOM grid enabling
the classification of samples into a small number of
diagnostic or prognostic groups [4-6]. The SOM method
can be configured also in such a way that it combines
both, the sample- and gene-centered perspectives [7-9].
This specific approach decodes the expression pattern of
ten thousands of genes per sample into a two-dimen-
sional mosaic pattern which allows the sample-to-sam-
ple comparison of expression profiles by direct visual
inspection.
It has been demonstrated that such SOM displays are

featured by several important benefits [7-9]: (i) they pro-
vide an individual visual identity for each sample; (ii)
they reduce the dimension of the original data; (iii) they
preserve the information richness of the molecular por-
traits allowing the detailed, multivariate explorative
comparisons between samples, (iv) they are highly intui-
tive not-requiring specific knowledge of the underlying
algorithmic kernel of the method, and (v) they can be
treated as new, complex objects for next level analysis in
terms of visual recognition.
SOM-based gene expression analyses have been

applied, for example, in studies on cell differentiation
and development [10-12], organogenesis [13] and tumor
differentiation [14]. It has been demonstrated that SOM
analysis can visualize relevant substructures inherent in
the data without forcing them into hierarchies and with-
out significant loss of primary information [7]. This
intuitive image-based perception clearly promotes the
discovery of qualitative relationships between the sam-
ples in the absence of an existing hypothesis. The SOM
approach also offers new concepts of data analysis based
on, e.g., metagene summaries, global entropy estimates
and state-space trajectory characteristics [12,13].
Despite its convincing advantages the SOM method is

relatively infrequently applied to high-dimensional mole-
cular data compared with alternative approaches such as
hierarchical clustering. Possibly, interpretation of SOM
mosaic patterns is less trivial and/or unusual for many
researchers because it requires basic understanding of
details of the method such as the way how expression of
real genes transforms into expression profiles of the
metagenes. The lack of availability of this information
presumably hampers application of SOM-based methods
in a wider number of applications. Moreover, standard
analysis tasks such as feature selection, significance ana-
lysis of differential expression and functional gene set
enrichment analysis require the availability of appropri-
ate algorithms and of suited program tools to generate

the desired information. Such approaches must consider
the specifics of gene expression analysis (e.g., informa-
tion about the microarray platform used, the probes and
the genome of interest, statistical issues and previous
knowledge on functional-related gene sets) on one hand,
but also the specifics of SOM-machine learning on the
other hand.
We strongly advocate in favor of the SOM method.

The present publication aims at bridging the gap
between the potency of SOM-machine learning to
reduce dimension of high-dimensional data on one hand
and its availability with special emphasis on gene
expression analysis on the other hand. Our approach
includes a series of analytical reports which might sup-
port interpretation of SOM metagene data (see below)
and an available R-program package. Here we focus on
the identification and functional interpretation of meta-
gene clusters using gene set overrepresentation analysis,
a novel aspect in the context of SOM analysis, and on
the comparison of data analysis based on single and on
metagenes.
We apply our approach to expression data of human

tissues which is well suited as an illustrative example:
The selected 67 tissues provide a sufficient large data
set of highly diverse expression pattern possessing a
complex internal covariance structure. Moreover, the
samples are well classified in terms of distinct tissues
and tissue categories allowing the clear assignment of
expression pattern. The discovery of this human body
index data set is also motivated by the argument that
tissue-specific RNA expression pattern indicate impor-
tant clues to the physiological function of the coding
genes, suitable as a reference for comparison with dis-
eased tissues. Our analysis thus provides a first step
towards a SOM atlas of gene activity in normal human
tissues which complements previous work on this objec-
tive [15-18].
We address selected methodical aspects of the SOM

method which aim at extracting functional information
about the expression pattern: Firstly, we complement
the gallery of primary SOM images with a number of
summary maps characterizing the covariance structure
of the data after transformation into latent variables.
These summary maps allow extraction of so-called spot-
clusters which collect co-expressed metagenes together.
This spot-clustering enables to significantly reduce the
dimensionality of expression data to a handful of repre-
sentative expression-modules in an unsupervised fash-
ion. The results of SOM-clustering are compared with
the results of alternative methods such as non-negative
matrix factorization, hierarchical clustering and sets of
correlated genes. Secondly, the detected spot-clusters
are linked with biological knowledge to support func-
tional interpretation of the data based on the ‘guilt by
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association’ principle. Particularly, we apply gene set
overrepresentation analysis to visualization space which
is a novel approach to our best knowledge. Thirdly, we
analyze the capability of the SOM approach for data fil-
tering and dimension reduction in terms of maintaining
representativeness and reduction of noisiness of the
data. Finally, we applied SOM analysis in a zoom-in step
to a subensemble of tissues to increase the resolution of
the method. We use the sample-centered second-level
SOM representation to visualize similarity relations
between the different tissues and compare the results
with independent component analysis.
The main paper is supplemented with additional files

which provide the full gallery of SOM-images of human
tissues, a detailed methodical section addressing issues
such as calibration of microarray raw intensity data to
minimize possible artifacts due to systematic biases
caused by improper preprocessing [19], the configura-
tion of the SOM-method and additional options of data
analysis. We developed our own R-program including
all analysis functionalities described below for applica-
tion of the method. The program is available as CRAN-
package ‘oposSOM’.

2. Results and discussion
2.1. Expression maps of human tissues
Microarray expression data taken from the human body
tissue index data set were input into the SOM machine
learning algorithm after calibration and normalization of
the raw probe intensities as described in the Methods
section below and in Additional file 1. Our SOM
method transformed the whole genome expression pat-
tern of about 22,000 single genes into one mosaic pat-
tern per tissue studied. Figure 1 shows selected SOM-
fingerprints of 42 selected tissues using a 60 × 60
mosaic grid. The collection of SOM profiles of the com-
plete set of 67 tissues is given in Additional file 2 (Addi-
tional file 3 shows respective profiles using modified
contrasts, please see detailed description in Additional
file 1). Each tile of the SOM mosaics refers to one of
3,600 metagenes characterizing the expression landscape
of the data set. The metagenes act as representatives of
miniclusters of single genes with similar expression pro-
files. Their number varies from metagene to metagene
(see below). The color gradient of the map was chosen
to visualize over- or underexpression of the metagenes
in the particular tissue compared with the mean expres-
sion level of each metagene in the pool of all samples
studied: Maroon codes the highest level of gene expres-
sion; red, yellow and green indicate intermediate levels
and blue corresponds to the lowest level of gene expres-
sion. Each individual mosaic exhibits characteristic spa-
tial color patterns serving as fingerprint of the
transcriptional activity of the respective tissue sample.

The tissues are grouped into ten categories in accor-
dance with the classification used in Hornshoj et al.
[20]. Most of these categories show typical SOM-land-
scapes which are characterized by red and blue spots at
specific positions due to over- and underexpressed
metagenes as the most evident features. For example,
the profiles of adipose tissues might be identified by the
maroon-red overexpression spot in the right upper cor-
ner and those of nervous tissues by a similar spot in the
top left corner.
Some tissues combine the characteristic spot pattern

of different tissue categories (see Figure 2). For example,
the expression fingerprint of tongue (no. 24) shows the
typical overexpression spot evident in the profiles of
other epithelial tissues (e.g. 21: oral mucosa) but also
the spot typically found in muscle tissues (e.g. 32: skele-
tal muscle). The physiology of tongue tissue as a
‘mucosa covered muscle’ is thus reflected in the expres-
sion profile. Another example is pituatary gland (profile
no. 5), an endocrine gland located near hypothalamus:
Its SOM landscape shows the upregulated spot found in
other nervous system tissues (e.g. cerebral cortex or the
adjacent hypothalamus, no. 49 and 56, resp.) in the top
left corner, as well as a unique spot in the bottom right
area not found in the profiles of other tissues. This spot
obviously collects genes which are specifically overex-
pressed in pituatary gland (see below), whereas the first
spot represents a common signature typically found in
nervous system samples. Some SOM-fingerprints are
outliers in their tissue category: For example, small
intestine (no. 12), classified as digestive tissue, shows the
overrepresentation pattern of muscle type tissues. This
is not surprising as this organ consists of a double layer
of smooth muscle. Also myometrium (no. 33), the
smooth muscle of the uterus, is classified as muscle. Its
SOM expression profile however closely resembles that
of endometrium (no. 26) and also of ovary (no. 27),
reflecting the common function of these three organs in
female reproduction.
In general, SOM fingerprints within a tissue category

reveal similar pattern, whereas different tissue types
show consistently different expression landscapes. Such
differences can be detected, for example, by simple
visual inspection of the mosaic pattern of nervous,
immune system and endocrine type tissues. Hence,
comparison of the SOM-textures allows the straightfor-
ward grouping of the tissues into different categories
based on differences of their expression patterns.

2.2. Metagene characteristics and overexpression spots
The metagene expression profiling map in Figure 3a
illustrates the systematic character of the alterations of
metagene expression between different regions of the
SOM. Adjacent metagene profiles show similar profiles
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Figure 1 SOM expression profiles of 42 selected tissues. The tissues are sorted according to tissue categories in agreement with the
classification used in Hornshøj et al. [20]. The color of the heading of each tissue category and the numbering of tissues are used also in the
other figures throughout the paper.
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whereas more distant metagenes are different and partly
show mirror symmetry with respect to the abscissa. In
the centre of the map one finds virtually invariant meta-
genes whereas the profiles along the borders of the map
strongly vary between different tissue categories. This
distribution of the profiles reflects the fact that SOM
machine learning tends to maximally segregate different
modes of strong variation on one hand while maximiz-
ing the distance between such modes relative to virtually
invariant profiles on the other hand. Note also, that the
number of real genes per metagene strongly varies
throughout the map as indicated by the numbers given
in each tile of the metagene expression profiling map.
The metagene expression profiling map uses a smaller

number of tiles and thus a coarse grained latticing of
the mosaic. The population and variance maps shown in
panel b and c of Figure 3 provide information about the
number of single genes per metagene minicluster and
the variability of the metagene profiles via appropriate

color coding using the finer granularity of the mosaic.
SOM-machine learning scales the difference between
the expression profiles of adjacent metagenes inversely
to their population, i.e., adjacent metagene profiles
become more similar for highly populated metagenes.
This way the method tends to distribute the single
genes over as much as possible tiles. The population
map reveals that the real genes inhomogeneously distri-
bute among the tiles of the mosaic (Figure 3b). Highly
populated metagenes (nk > 20, see yellow and red tiles)
predominantly group along the edges of the map
whereas only a few highly populated tiles are found in
its central area. A zone of ‘empty’ metagenes lacking
real genes (nk = 0, see dark blue tiles) clusters in four
regions halfway between the centre and the edges of the
map. The tile of maximum population (nk = 308, see
the dark brown tile slightly left from the centre of the
map) refers to genes with virtually invariant, mostly
absent specific expression in all tissues studied (see

Figure 2 Specific spots in selected expression profiles: Tongue (panel a), oral mucosa (b), skeletal muscle (c), pituitary gland (d),
cerebral cortex (e) and hypothalamus (f). The SOM-pattern of tongue (a) shows two spots of upregulated metagenes. One of them is
characteristic for mucosa type tissues (b; red circles) and the other one is found in muscle tissues (c, yellow circles). Pituatary gland (d) shows a
specific spot for this particular tissue and one which is characteristic for nervous system tissues (e and f, blue circles) as well.
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Figure 3 Metagene characteristics: Metagene expression profiling map of the 67 tissues studied (panel a), population (b), variability
(c, Eq. (2)), metagene over- (d) and underexpression (e) maps. Panel a): Metagene profiles are shown by thick curves whereas thin grey
ones show the profiles of associated real genes. The vertical axis is the logged expression change relatively to the mean expression of the
selected gene averaged over all tissues. All tiles use the same vertical scale. The number in each tile gives the population of the respective
metagene cluster with real genes. The bars color-code the tissue samples (compare with headings in Figure 1). The circles indicate over- and
under-expression in selected tissues listed in the boxes (see text). One sees that the metagenes in the top left and the bottom right corner
cluster genes strongly overexpressed in nervous (grey circle) and immune system (blue circle) tissues, respectively. Panel d) and e): Red/maroon
spots mark overexpression, blue ones underexpression. Selected spots are marked by letters (capital and lower case letters refer to maxima and
minima, respectively). They are assigned to different tissues in Table 1.
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Additional file 1). These invariant genes give rise to the
dark blue spot in the central area of the variance map
(Figure 3c). The variance map also reveals that other
nearly invariant metagenes cluster around this tile in the
central area of the map (see blue and green areas in Fig-
ure 3c). Both, invariant and empty metagenes carry
essentially no specific information as classification mar-
kers in transcriptional profiling. Hence, the tiles occu-
pied by empty and invariant genes form regions not
suited for differential expression analysis between the
tissues studied.
The more variant and higher populated metagenes

reveal an underlying spot like pattern preferentially
along the boundaries of the map (red areas in Figure
3c), which agrees with the over- and underexpression
spots detected in the SOM mosaics of individual tissues.
For an overview about all observed spots we generate
two types of integral maps characterizing over- and
underexpression, respectively (Figure 3d and 3e). They
transfer either the over- or the underexpression spots
observed in the individual profile into one master map.
The profiles of selected metagenes reveal marked under-
and overexpression for distinct tissue types which trans-
form into a characteristic spot patterns (see Figure 1
and Figure 3). For example, the metagenes in the top
left corner show overexpression for nervous system and
underexpression for immune system tissues whereas the
metagenes in the bottom right corner are, in turn, char-
acterized by overexpression in immune system tissues.
Table 1 assigns the different spots to the tissue mosaics
in which they are observed.

2.3. Gene set overrepresentation
The SOM assigns mini-clusters of real genes to each
metagene represented by a tile in the two-dimensional
mosaic pattern. These metagenes collect sets of single
genes with similar, mostly highly correlated expression
profiles. The correlation and coexpression of the single
gene profiles in each spot can be utilized as a simple
heuristics with implications for tentative gene function
because biological processes are usually governed by
coordinated modules of interacting molecules [21].
Application of gene set overrepresentation analysis to
the metagene clusters makes use of this ‘guilt-by-asso-
ciation’ principle which assumes that co-expressed genes
are likely to be functionally associated [22,23]. Previous
SOM analyses have shown that, indeed, functionally
related genes cluster together in the SOM images [7].
For each of the miniclusters we therefore estimate the

degree of overrepresentation with respect to pre-defined
gene sets using the hypergeometrical (HG-) distribution.
It provides an overrepresentation p-value for each meta-
gene and each gene set considered. We visualize the dis-
tribution of p-values of each gene sets using the same

two-dimensional mosaic as used for the original SOM
images and appropriate color-coding. The obtained
overrepresentation maps allow identification of meta-
genes containing an enriched fraction of genes from a
selected gene set by visual inspection. Note that this
map applies to all samples studied because each of the
mini-clusters contains the same genes in all samples
used to train the SOM. The overrepresentation map
thus reflects the global enrichment pattern of a chosen
set of genes in the experimental series studied.
Figure 4 shows overrepresentation maps for selected

gene sets. Their overrepresentation is usually observed
in different regions of the map, for example in the bot-
tom right and top left corner for genes related to
‘immune system process’ and to the ‘transmission of
nerve impulse’, respectively. The examples also show
that overrepresentation is either strongly localized in
one region of the map (e.g. for ‘nervous system’ or, to a
less degree, for ‘RNA repair’ and ‘immune system pro-
cess’) or it spreads over wider areas of the SOM (e.g. for
‘apoptosis’).
Overrepresentation analysis is not restricted to single

tiles but it can also be applied to the over- and underex-
pression spots detected in the previous subsection.
Accordingly, overrepresentation of selected gene sets
can be linked with additional properties of the expres-
sion profiles such as overexpression by combining spot
selection with overrepresentation analysis. Particularly,
the genes associated with each spot are analyzed for
overrepresentation of genes taken from the collection of
1454 gene sets downloaded from the GSEA-homepage
according to the GO-categories molecular function, bio-
logical process and cellular component (see methods
section). The hypergeometrical distribution then pro-
vides an ordered list of gene sets ranked with decreasing
significance of overrepresentation for each of the spots.
Figure 5a shows the overexpression summary map

with nine spots of strongly overexpressed metagenes.
The legend assigns the two leading gene sets in the list
of each of the spots to get a first idea about the possible
biological context of the genes in the spots. For exam-
ple, spot A in the top left corner of the SOM is clearly
related to molecular processes in nervous cells accord-
ing to the leading gene sets (see also Table 1). The sig-
nificance of overrepresentation of the top-twenty gene
sets are visualized for three selected spots in Figure 5b
using bar plots. Ten out of the top-twenty gene sets of
spot A are related to nervous system (Figure 5b). Also
other spots can be associated with distinct molecular
functions such as immune system processes (spot F),
sexual reproduction (spot E) or muscle contraction
(spot B).
The heatmap in Figure 6 visualizes the metagene

expression in each of the spots in the series of tissues
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studied. It allows to link overexpression with overrepre-
sentation in a tissue- and spot-specific way. It clearly
reveals that nervous (see grey bar on top of the heatmap
for assignment), muscle (green) and homeostasis (ocher)
tissues are characterized by essentially only one overex-
pression spot (spot A, B and C1, respectively) with
clearly assigned molecular function. Some of the tissue-
specific spots are also overexpressed in other tissues.
For example, the muscle-specific spot B shows overex-
pression also in tongue and small intestine which partly
contain muscle tissues as discussed above.
It is noteworthy that the enriched areas in the overre-

presentation maps of the gene sets ‘nervous system
development’ and ‘immune response’ (see Figure 4) lar-
gely agree with the overexpression spots in the SOM
images of nervous and immune system tissues, respec-
tively. A non-negligible number of genes from these sets

are however located in other regions of the map which
are assigned to alternative molecular functions. For
example, genes from the gene set ‘immune response’
accumulate in spot D assigned to tissue development.
This spot is overexpressed in a larger number of tissues
such as epithelium and adipose tissues which are not
explicitly assigned to the category immune system tis-
sues. Moreover, subgroups of genes from these gene
sets are located in the central area of the map which
accumulates virtually invariant and weakly expressed
genes (compare with Figure 3). Possibly part of the
genes in these sets are incorrectly specified and/or pos-
sess a more complex activation pattern ‘beyond’ the
similarity metrics used to train the SOM. We suggest
that combination of gene set overrepresentation analysis
with SOM-expression profiling allows verification and
further refinement of existing gene sets.

Table 1 Functional assignment of tissue specific over- and underexpression spots using the GO-terms biological
process/molecular function (see also Figure 3d and 3e).

Spot
a

Over-/underexpressed in tissue a Biological process/Molecular function (overrepresented
genes set) b

A Nervous system samples (45-67), pituatary gland(5) Nervous system development
Synaptic transmission
Transmission of nerve impuls

B Muscle related: small intestine (12), tongue (24), heart atrium&ventricle (29, 30),
muscle (31, 32)

Structural constituent of muscle
System process
Striated muscle contraction

C1 Liver (10), kidney cortex&medulla (8,9) Substrate specific transporter activity
Carboxylic acid metabolic process
Organic acid metabolic process

C2 Pancreas (6) Carboxypeptidase activity
Carboxylesterase activity
Digestion

D Adipose tissue (1-3), epithelium tissue (18-26), ovary (27) Tissue development
Organ development
Ectoderm development

E Male reproduction: testis (28) Sexual reproduction
Reproduction
Gamete generation

F Immune system samples (34-44) Immune system process
Immune response
Defense response

G Pituatary gland(5) Hormone activity
DNA fragmentation during apoptosis
Apoptotic nuclear changes

H Bone marrow (40), thymus (43) Cell cycle process
Mitotic cell cycle
Cell cycle phase

a Immune system (34-44) Regulation of axonogenesis
Regulation of structural morphogenesis
Regulation of neurogenesis

b Various samples without clear assignment, e.g., sexual reproduction and
muscle

Microtubule binding
Protein maturation
Tubulin binding

c Epithelium and muscle tissues RNA metabolic process
Biopolymer metabolic process
RNA processing

a Spots are assigned in Figure 3d and 3e. Over- and underexpression spots are labeled using upper and lower case letters, respectively.
b Top-three overrepresented gene sets
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In summary, gene set overrepresentation analysis links
selected gene sets and different regions of the SOM
images with single-tile resolution. These regions, in
turn, can be collected into over- or underexpression
spots in different tissues. Overrepresentation analysis
then provides lists of significantly overrepresented gene
sets which characterize the respective spot in a func-
tional context. Some of the spots can be assigned to
specific molecular characteristics such as ‘nervous pro-
cesses’, ‘muscle contraction’ and ‘immune response’.
Both, the single-tile SOM-wide and the multi-tile spot-
wise overrepresentation analysis constitute a link
between characteristic expression pattern and concepts
of molecular function for the associated genes. These
orthogonal views complement each other: The former
one judges the homogeneity of a selected set with
respect to different metagene expression profiles. The
latter one assigns selected expression profiles to their
tentative molecular function.

2.4. Filtering metagenes and single genes
The reduction of the size of the data set by removing
genes that carry essentially no or low information is
common practice to improve downstream analysis such
as two-way hierarchical clustering of genes and samples.
Such data reduction has been shown to result in den-
drograms which more accurately reflect relationships
between the samples with increasing stringency of the
filter applied [24]. This improvement can be rationalized
by the fact that random noise tends to disrupt similarity
relations between genes and samples. On the other
hand, also the opposite trend is possible: systematic
errors in the data, e.g. due to batch effects, can cause
artificial clustering if the bias affects subsets of genes in
a coordinated fashion. Hence, a particular filter aims at
improving data by removing either noisy, biased and/or
weakly expressed genes. On the other hand, extreme fil-
tering is dangerous because it may eliminate valuable
information, for example, about genes of relatively low

Figure 4 Overrepresentation maps of six selected gene sets containing between Nset = 157 and 472 genes. Overrepresentation in each
tile of the mosaic is calculated in units of log(pHG) using the hypergeometrical distribution and color-coded (maroon > red > yellow > green >
blue). White areas indicate metagenes not containing genes from the respective set). Strongest overrepresentation of the different gene sets is
found in different regions of the SOM (see red circles). Overrepresentation can be concentrated within one or a few adjacent metagenes (e.g.
nervous system, panel b) or spread over different disjunct regions of the map (apoptosis, panel d).
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and thus noisy expression but with important biological
impact. Hence, filtering is an optimization task with the
requirement of removing virtually irrelevant data while
preserving all information in the remaining part of the
data which is important in the context of the particular

issue studied. We will shortly call the latter property as
the ‘representativeness’ of a filter and the former one as
its ‘noisiness’, i.e. the mean noise-to-signal ratio of the
data included. Optimization thus aims at maximizing
representativeness while minimizing noisiness.

Figure 5 The overexpression summary map shows nine spots which are strongly overexpressed in different tissues. (part a)
Overrepresentation of a collection of 1454 gene sets is estimated for each spot using the hypergeometrical distribution. The right legend
assigns the two most significantly overrepresented gene sets to the respective spots. The top-twenty gene sets of the ranked list are shown in
part b for three selected spots. The length of the bars scales with the logged overrepresentation p-value of the sets. The color assigns the
category of the gene sets according to the GO terms ‘molecular process’ (green), ‘molecular component’ (red) and ‘molecular process’ (blue).
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’Top-list selection’ is probably the simplest method of
filtering: One first defines a ranking criterion such as
differential expression or variability (see below), then
one ranks the data accordingly and finally selects a cer-
tain number of features on top of the list for further
analysis. The length of the list can be cut by applying
different criteria such as a fixed number of features or a
significance threshold.
SOM analysis enables alternative filtering based on the

metagenes as representative features characterizing the
expression profiles of miniclusters of single genes. In
other words, the metagene profiles itself can serve as a
filtered and compressed extract of the original data. Our
SOM-method assigns the expression profiles of the N =
22,277 input genes measured in 67 tissues to 3,600

metagene clusters. Each metagene cluster consequently
contains G/M = <nk > = 6.2 real genes on the average.
Hence, complexity of transcriptome characterization is
reduced to about one sixth by utilizing the metagenes
instead of the ‘real’ genes.
Moreover, the local G/M-ratio considerably varies

between the different metagene clusters with minimum
and maximum values of nk = 0 (empty metagenes) and
nk = 308 (see Figure 3b). Thus each metagene can be
representative for a very different number of real genes.
In consequence, the importance of transcriptome infor-
mation is effectively reweighted by using metagenes
instead of real genes. For example, the metagene of
highest population (nk = 308) clusters genes of virtually
invariant expression profiles. These essentially not-

Figure 6 Overexpression summary heatmap of selected global spots (A - H, see Figure 5 and Table 1) in all tissues studied. The tissues
are grouped into different categories in horizontal direction (see the color bar on top of the map; the colors are assigned to the categories in
agreement with Figure 1). Each spot refers to one row. The top-three overrepresented gene sets are assigned in the right part of the map. The
expression scale refers to the metagene of maximum expression in the respective spot.
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informative features comprise 1.4% (308/22,277 × 100%)
of all single genes but only 0.3% (1/3,600 × 100%) of all
metagenes. Hence, their contribution is effectively
down-scaled by nearly a factor of ~1/5 if one uses the
metagenes instead of real genes. In other words, SOM
clustering itself can be viewed as a sort of selective com-
pression filter reducing the number of features consid-
ered by condensing larger numbers of similar single
gene profiles into one metagene profile with a profile-
specific compression factor, Fk

compression = (nk⋅K/N)-1 (K
and N are the total numbers of metagenes and of single
genes, respectively).
Metagene filtering is expected to outperform single

gene filtering in terms of representativeness and noisi-
ness because the reduced number of metagenes not only
preserves the diversity of single gene profiles but it also
amends the resolution of downstream analysis due to
the reduced noise of the metagene profiles. With the
objective of proving this expectation we compare two
options for data filtering by applying top-list selection
either to the metagenes or to the single ‘real’ genes. We
used three types of filters to reduce the number of sin-
gle genes and metagenes, namely fold change (FC)-
expression, variance and significance (FDR-) filtering
(see Additional file 1 and the methodical section). In the
first case the full set of absolute FC-values of all genes
(real genes and metagenes) under all conditions studied
are ranked and a certain number of topmost features is
considered for further analysis.
Note that lists of equal numbers of metagenes and of

single genes are asymmetric owing to data compression
in the metagene miniclusters. The different sample sizes
selected by both options of filtering are given in detail
in Additional file 1. Metagene lists integrate roughly a
tenfold larger number of ‘real’ genes in our SOM set-
tings. Figure 7 compares the areas in the SOM mosaic
filtered by FC-lists of different lengths if applied either
to metagenes or to single genes. The shorter metagene
lists cover essentially the same regions of the SOM as
the longer single gene lists with considerable overlap of
the selected meta- and single genes. The large overlap
demonstrates that the metagene filter is representative
for the metagene-associated single genes which are also
selected to a large fraction if one applies single gene fil-
tering using a roughly ten-times longer list. For exam-
ple, 3,529 out of the 3,600 single genes are shared by
the FC-3600 single gene and the FC-1000 metagene lists
(’FC-1000’ denotes the ‘fold change top-1000’ criterion,
see Figure 7a). However, 444 out of the top-1000 meta-
genes do not contain the genes from the single gene list
which, on the other hand, contains 71 single genes in 44
metagenes not selected by the metagene list. Hence, the
metagene filter covers a wider range of expression pro-
files than the single gene filter which selects only a few

additional features. Figure 7b illustrates that different
spot areas are progressively excluded from the list of fil-
tered features with increasing stringency of the filter as
expected.
In addition to FC-filtering we applied variance and

significance filtering which select profiles of largest var-
iance and of highest significance of differential expres-
sion, respectively. The former filter possesses similar
properties as the FC-filters. In contrast, significance fil-
ters select more diverse collections of features which are
spread over different areas in the respective mosaic
representations (see Additional file 1). Below we apply
FC-filtering in the more detailed analysis to judge the
consequences of both filters for selected downstream
characteristics.

2.5. Metagene- and single genes-based clustering analysis
In the next step we applied secondary standard analysis
methods to the lists of filtered genes and metagenes to
assess the particular effect of filtering. We performed
one- and two-way hierarchical clustering and indepen-
dent component analysis (ICA) using either the expres-
sion values of a list of real genes or of a list of
metagenes of selected lengths. Hierarchical cluster ana-
lysis was applied because this method is often routinely
run as a first step of data summary in microarray data
analysis [25].
One way hierarchical cluster trees obtained from sin-

gle gene and metagene FC-lists of length 3600, 1000
and 100 reflect similar properties showing that cluster-
ing is relatively robust with respect to the chosen condi-
tions (Figure 8a). Tissues from categories with
homogenous SOM-pattern such as nervous (grey), adi-
pose (orange) and immune system (blue) tissues (see
also Figure 1) robustly cluster together at nearly all con-
ditions studied. Note that the blue cluster of immune
system tissues however partly decomposes if one uses
the shortest single gene list (FC-100) owing to the loss
of representativeness. On the other hand, the FC-100
metagene list of equal length still produces a compact
blue cluster reflecting the improved representativeness
of the same number of metagenes.
The blue immune system tissue cluster splits for both,

the single gene and metagene filters in the opposite
limit of low stringency using FC-3600 lists. These lists
obviously become too long with worse noisiness charac-
teristics. Note, that the FC-3600 metagene list considers
all available metagenes whereas the FC-3600 single gene
list is still limited to only 16% of all available single
genes. Longer single gene lists reduce the quality of the
observed cluster structure due to the progressive inclu-
sion of noisy genes (data not shown). In summary,
metagene lists are more representative and less noisy
than single gene lists of equal length in downstream
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cluster analysis. On the other hand, also the length of
metagene lists is optimal in the intermediate range (e.g.,
the FC-1000 list in our study): shorter and longer lists
are suboptimal in terms of representativeness and noisi-
ness, respectively.
The cluster trees generated on the basis of single gene

and metagene lists reveal another interesting difference
(compare the first and second rows in Figure 8a): The
mean length of the outmost branches between the per-
iphery of the circles and the first split point is consider-
ably shorter for the metagene-based trees than for the
single gene-based trees. This relation reverses for the
innermost branches. This systematic difference indicates
that metagene clusters are more compact than single
gene clusters (an illustrative explanation for this differ-
ence is given in Additional file 1) owing to the

decreased noisiness of the metagene data. In the right
part of Figure 8a we compare the inter-to-intra cluster
ratio of the Euclidian distances between the samples (F-
score) for three tissue categories as a simple measure of
the compactness of their clusters. The F-score of the
metagenes systematically exceeds that of the single
genes.
Figure 8b shows two-way hierarchical cluster heat-

maps after FC-filtering of metagenes and single genes.
This type of representation visualizes similarity relations
between the samples in horizontal direction (see the
color bars which assign the tissue categories) and
between the filtered genes in vertical direction. One
immediately observes that the contrast of the heatmaps
increases from the left to the right because more strin-
gent filters trivially accentuate larger differences between

Figure 7 Filtering genes or metagenes by differential expression: Different numbers of metagenes (left mosaics) and single genes
(right mosaics) are selected using the FC-1000/FC-3600 (a) and FC-100/FC-1000 (b) filters to account for the data compression in the
metagene clusters. The brown areas in the left part show the selected metagenes and the colored tiles in the right part the fraction of single
genes in the metagene miniclusters (maroon to blue codes high to low fractions). The Venn-diagrams illustrate the degree of overlap between
the metagenes and single genes selected by both filters.
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Figure 8 The effect of filtering of single genes and metagenes on the results of one-way hierarchical clustering trees (part a), two-
way hierarchical cluster heatmaps (part b) and independent component analysis (part c) of the 67 tissues studied. The samples are
color-coded according to the classification of tissues introduced in Figure 1. Top-list FC filters select the 3600, 1000 and 100 (from left to right)
most strongly differentially expressed genes/metagenes in all samples. Note that the ICA-plots are invariant with respect to reversing the
direction(s) of the coordinate axe(s) and thus to mirror and rotational symmetry operations. The right part shows different benchmark criteria for
different lengths of the FC-lists ranging from FC-3600 to FC-100 (see top axis). The benchmark criteria were applied to nervous system, immune
system and epithelium tissues (see text and Methods section).
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over- (red) and under (blue) expressed features. The loss
of contrast for the longer FC-3600 and FC-1000 lists
(compared with the FC-100 list) is stronger for the
metagenes because data compression includes a larger
fraction of features of small differential expression
(green and light blue areas) than the respective single
gene lists. On the other hand, the short FC-100 list of
metagenes produces the heatmap of strongest contrast
illustrating the favorable signal-to-noise characteristics
of the filtered metagenes.
The heatmaps express detailed information about the

amount of genes differentially expressed in the various
tissues (cluster size, see the right part of Figure 8b). For
example, the percentage of single genes which are over-
expressed in the nervous tissues and underexpressed in
the other tissue categories (see also the green/maroon
area associated with the grey bar on top of the heat-
maps) increases from values of less than 50% (FC-3600)
to a dominating amount of more than 90% (FC-100)
whereas the percentage of genes overexpressed in other
tissue categories almost completely vanishes. Hence, the
relative contribution of genes collected into clusters
characterizing a selected tissue clearly depends on the
length of the list. The use of metagenes instead of single
genes effectively re-weights the contribution of tissue-
specific genes. Particularly, the percentage of metagenes
which are specific for nervous tissues is markedly smal-
ler in the metagene list giving rise to a more balanced
distribution of features.

2.6. Metagene- and single genes-based ICA analysis
Hierarchical clustering may identify groups of samples
which share genes or metagenes of similar expression
pattern. Hierarchical clustering however does not repre-
sent the multivariate structure of the data. Such aspects
become highlighted by projecting the data to subspaces
of lower dimension spanned by interesting modes such
as the components of minimum mutual statistical
dependence. ICA provides a visual plot in the space
spanned by these independent components which are
shown to point along the directions of maximum infor-
mation content in the data or, equivalently, of non-nor-
mal distribution of the data [26]. We applied ICA to
single and metagene lists to see which of the alternative
data sets offers the better separation among the various
tissue groups.
The ICA-plots of the two leading independent compo-

nents shown in Figure 8c illustrate the degree of similar-
ity between the samples as a function of the selected
filters. All filters except one provide virtually three clus-
ters, namely that of nervous (grey circles), immune sys-
tem (blue) and the remaining tissues. The FC-100 single
gene filter merges the latter two clusters due to its small
representativeness with respect to non-nervous tissues

(see also the respective heatmap in Figure 8b). Note also
that the relative dimension of the three clusters in the
ICA-plot and thus also their intrinsic resolution changes
from filter to filter. These trends reflect the subtle inter-
play between the length of the list and its representa-
tiveness and/or noisiness which might overweight one
tissue category and underweight another one. For exam-
ple, the specifics of epithelium tissues (cyan circles)
become relatively well resolved using the FC-100 meta-
gene or, alternatively, the FC-1000 single gene lists. The
respective heatmaps in Figure 8b confirm that this tissue
category is well represented by a reasonable number of
specifically over- and underexpressed genes/metagenes
in these lists. The fraction of these genes however
clearly decreases in the other filtering lists giving rise to
the suboptimal resolution of the cluster of cyan circles
in the ICA plots. The right part of Figure 8c compares
the relative size of three clusters in terms of the fraction
of the covered coordinate region. The metagene-based
clusters are less dependent on the chosen length of the
list and more balanced especially for short lists.
The ICA plots in Figure 8c reveal another interesting

property inherent in the expression profiles: The points
especially of nervous (grey) and immune systems (blue)
but also of epithelium (light blue) tissues form chain-
like clusters which point roughly along the coordinate
axes. This pattern reflects the fact that the transcrip-
tional activity of nervous tissues on one hand side and
immune system and epithelium tissues on the other
hand side are governed by different and mutually inde-
pendent groups of genes. We will discuss this point
below more in detail in the context of the SOM
mosaics. In the context of the filter lists it should be
noticed that this property of the data gets partly lost
after most stringent single gene filtering (FC-100)
whereas essentially all metagene lists well reflect the
independence of the expression pattern of the different
tissue categories.
In summary, ICA analysis illustrates the robustness

and the discrimination power inherent in the metagene
lists. The use of metagenes allows compressing the
length of the list by about one order of magnitude with-
out loss of information. The filtering conditions govern
the resolution between different tissue categories in the
ICA plot in a subtle way. Short and intermediate meta-
gene lists provide best results in this respect. Notably,
consideration of the full metagene information without
filtering (FC-3600) provides still reasonably resolved
clusters in the ICA-plot. In conclusion, metagenes are
more robust with respect to the quality of secondary
analysis than single gene lists owing to their better
representativeness. Hence, the reduction of dimensional-
ity provided by SOM analysis improves the performance
of downstream hierarchical clustering and ICA analysis.
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The number of considered features can be reduced by
about one order of magnitude without loss of informa-
tion if one uses metagenes instead of real genes. Clus-
tering and ICA characteristics obtained for the
metagene and single gene lists after variance and FDR
filtering virtually agree with the results of FC-filtering
(see Additional file 4).

2.7. Metagene- and single gene-based correlation analysis
In the next step we calculated pairwise correlation maps
(PCM) illustrating Pearson correlation coefficients for all
mutual combinations between the tissues. The PCM-
heatmaps shown in Figure 9a are obtained using the
FC-1000 (single genes, left part) and FC-100 (metagenes,
right part) filters representing both roughly the same

Figure 9 Single gene (left panels) and metagene (right panels) correlation analysis of human tissues using the 1000/100 most
strongly regulated genes/metagenes: (a) Pairwise Correlation Map (PCM); (b) Frequency distributions of correlation coefficients for all
intra- and inter-tissue category pairings and (c) for pairings of intra-nervous tissue pairings and for pairings between nervous and all
other tissues. Note that the metagenes produce the stronger contrast of the PCM clusters due to the sharper and better resolved distributions.
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number of genes (see discussion above). The metagenes
clearly provide PCM-patterns of higher contrast which
becomes emergent as diagonal and off-diagonal dark
red/maroon and blue clusters. They refer to tissue pair-
ings with highly correlated and anti-correlated expres-
sion profiles, respectively. Both, the single gene and the
metagene PCM reveal essentially four groups of tissues
which consist mainly of nervous (see the grey bar at the
margins), immune system (blue bar), muscle (green bar)
tissues and also of a mix of diverse tissue categories.
The expression profiles of nervous tissues strongly

anti-correlate with essentially all the other tissue cate-
gories, i.e. a gene overexpressed in nervous tissues
usually becomes underexpressed in non-nervous tis-
sues and vice versa. The original expression SOM
always reflect this property showing one characteristic
overexpression spot in the top left corner (see spot A
in Figure 3 and Table 1) and otherwise a blue and
light blue background due to underexpressed genes/
metagenes (Figure 1). Muscle tissues show strong off-
diagonal correlation with the group of diverse tissues
but not with the immune system tissue group. This
property can be mainly attributed to spot D in the
right upper corner in the SOM of these tissues
whereas the diagonal correlation component mainly
originates from the muscle-specific spot B (see Figure
3 and Table 1). The cluster of immune system tissues
along the diagonal of the PCM can be associated with
spot F in their SOM. Hence, the diagonal and off-diag-
onal clusters in the metagene PCM can be related to
different spots in the original expression SOM of the
different tissue categories.
To get further insights into the origin of the contrast

differences between the single gene and metagene PCM
we calculated frequency distributions of the pairwise
correlation coefficients either between tissues of one
category or between tissues of different categories (Fig-
ure 9b). Intra-category correlation coefficients are
expected to be close to unity because samples of the
same categories show usually similar expression profiles.
Indeed, these metagene correlation coefficients are close
to unity as expected whereas the respective single gene
correlations show a markedly broader distribution
resulting in smaller correlation values on the average.
Inter-category pairings of single genes show a broad dis-
tribution centered about zero with a strong component
of anti-correlation near -0.5 revealing that single genes
of different tissue types are either not or anti-correlated.
The metagenes produce a more resolved trimodal distri-
bution with strong components of correlated, anti-corre-
lated and uncorrelated metagenes near 1.0, -0.7 and 0.0,
respectively. The component peaks are clearly sharper
and the whole distribution covers a wider range of cor-
relation values. Hence, the metagenes obviously enable

the better resolution of different subcomponents pro-
duced by different tissue types.
The PCMs reveal that anti-correlated metagene

expression profiles are especially found between nervous
tissues and the other tissues. We therefore calculated a
second set of frequency distributions restricting the
intra-tissue correlations to nervous tissues only and the
inter-tissue correlations to that between nervous and all
the other tissues (Figure 9c). The latter histograms
reveal that the degree of anti-correlation is much stron-
ger for the metagenes than for the single-genes again
showing that metagenes more sharply express the corre-
lation pattern of gene expression. Note that this anti-
correlation is evident already in the textures of the origi-
nal tissue SOM: Large blue areas in the SOM of nervous
tissues reveal under-expression of the respective meta-
genes which become selectively overexpressed in the
SOM of other, non-nervous tissues (Figure 1). The
inter-nervous tissue correlation histogram also shows a
strong correlation peak near unity which is caused by
the metagenes commonly overexpressed in nervous tis-
sues and pituatary gland (endocrine tissue, no. 5) as dis-
cussed above.
In summary, our extended dataset of human tissues

confirms the results of Guo et al. [14] who found that
SOM based metagenes well recapitulate gene expression
profiles of the entire gene dataset despite dimension
reduction and that the visual patterns capture the real
similarity relationships among samples with a high fide-
lity. Moreover, one can improve the resolution power of
popular standard analyses based on two-way hierarchical
clustering or pairwise correlation heatmaps using meta-
genes instead of real genes. The SOM metagene pattern
serves as an adequate data filter which appropriately
selects representative features characterizing the expres-
sion properties of the system studied.

2.8. Selecting tissue specific metagenes: comparison of
methods
One essential feature of the SOM approach discussed in
the previous subsections is the reduction of dimension-
ality of the full data set from ten thousands of single
gene expression profiles to a few thousand metagene
profiles. In a second unsupervised reduction step, the
dimensionality is further reduced to a handful of overex-
pression spots representing clusters of co-expressed
metagenes which are highly expressed in, at minimum,
one tissue. Particularly we demonstrated that the global
expression landscape of human tissues is characterized
by about nine- to - ten of such spots (see Figure 5). For
comparison with these spot-clusters we applied selected
alternative methods of dimension reduction: non-nega-
tive matrix factorization (NMF, see [27-29]), K-means
hierarchical clustering (HC, see [25]) and correlated
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gene set clustering (CGS, [30,31]). These supervised
clustering methods use different approaches: NMF vir-
tually decomposes each of the expression profiles in ori-
ginal space into an additive set of ‘metagene’ profiles
with non-negative expression amplitudes. HC is a heur-
istic iterative algorithm that tries to separate the original
data into compact clusters using typically Euclidian dis-
tance metrics. CGS uses correlation metrics in combina-
tion with stringent significance testing to group the
original data into groups of correlated single genes.
NMF, HC and SOM were compared under different
aspects in previous work (see [7,8,14,27,28] and refer-
ences cited therein). Here we judge the ability of the
methods to generate tissue-specific clusters using a sim-
ple entropy-measure [32]. We assume a number of ten
clusters in each of the supervised clustering methods in
correspondence with the SOM results. Figure 10 shows
that SOM clustering outperforms the alternative meth-
ods in terms of specificity of the obtained spot clusters.
In the supplementary material (Additional file 1) we
show that SOM-clustering also outperforms the alterna-
tive methods in terms of representativeness and correla-
tion contrast between nervous, immune systems and the
remaining tissues similar to the results presented in the
previous subsection.
Note that SOM, HC and CGS cluster genes together

which show similar profiles in the series of samples

using either distance or correlation metrics. Such groups
of co-expressed genes can be interpreted in a common
functional context based on the guilt-by-association
heuristics [22] (see above). Instead, NMF decomposes
the gene expression patterns as an additive combination
of NMF-metagenes whereas SOM, HC and CGS use a
decomposition that insists mutual exclusion of features
[22,27]. The functional meaning of this polysemous
decomposition of NMF in comparison with the exclu-
sive guild-by-association decomposition is presently not
clear and requires additional work.

2.9. Zoom-in step and similarity analysis
SOM expression profiles show very similar spot pat-
tern for tissues of the same category in most cases. For
example, the profiles of nervous and immune system
tissues are commonly characterized by highly
expressed metagenes in spot A located in the left
upper corner and in spot F located in the right lower
corner of the mosaic, respectively. Subtle tissue-specific
characteristics are visible in the blue and green regions
of under- and moderately expressed genes. These spe-
cific patterns of gene expression of selected subclasses
of tissues were studied with increased resolution using
a ‘zoom-in’ step which trains a new SOM based on the
reduced set of tissues samples. The obtained expres-
sion images reveal a much more diverse spot pattern
than the images obtained from the whole set of tissues
discussed because SOM training adapts the expression
profiles of the metagenes to a smaller bandwidth of
expression values observed in the subensemble
selected. Three examples for zoom-in analysis are pre-
sented in Additional file 1. We separately trained
SOMs for the nervous tissues, immune system tissues
and a collection of 31 diverse tissues including adipose,
muscle and epithelial tissues.
Guo et al. proposed a second-level SOM analysis step

[14]. It maps all samples together into one two-dimen-
sional mosaic pattern to visualize the degree of similar-
ity between their metagene expression profiles. The
second-level SOM algorithm uses the metagene expres-
sion of all samples considered as input. After training,
each tile of the mosaic is characterized by the expres-
sion profile of one ‘metasample’ which serves as the
condensation nucleus of the associated minicluster of
real samples possessing similar SOM pattern. The
mutual distances between the samples in the map are
related to the degree of similarity of their SOM expres-
sion pattern. Figure 11 shows 2nd level SOM and ICA
maps of the 67 tissues studied. One distinguishes essen-
tially the same three main clusters in both plots, namely
that of nervous tissues (grey), immune system tissues
(blue) and the remaining ones. The substructures of the
three groups were further disentangled by applying the

Figure 10 Cluster specificity of different methods. The specificity
is measured in terms of the entropy (Eq. (7)): small values refer to
tissues which are specifically characterized by only one cluster of
high expression whereas large entropy values refer to tissues with
more uniform expression of the metagene clusters. The boxplot
illustrates the distribution of the entropy values for all tissues
considered in each method.
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zoom-in step for each of the three tissue clusters as
described above.
In general, ICA and 2nd level SOM provide a similar

view on the samples, however with subtle differences.
For example, the ICA algorithm distributes the sample
points continuously in the coordinate system spanned
by the two leading principal components of maximum
information content. The mutual separation between
the points linearly scales with their distance in units of
these components. In contrast, SOM machine learning
uses non-linear scale to distribute the sample points in
the discrete space defined by the mosaic grid of meta-
samples. It enables to display differences between the
samples with improved resolution in regions of high
sample density. In consequence, the individual tissues
effectively spread over a larger area in the SOM mosaics
than in the respective ICA.
As noticed above, most of the samples group into lin-

ear clusters which orient along one of the coordinate
axes in the two dimensional ICA plots. The orthogonal
orientation of most of these clusters indicates that each
of them is characterized by genes which vary mutually
independently. For example, nervous and immune sys-
tems tissues aggregate into such linear and perpendicu-
larly-oriented clusters in the original ICA of all 67
tissues. Note that nervous and immune systems tissues
are characterized by their specific spots A and F, respec-
tively. Recall that these spots contain genes which
indeed vary virtually independently.
Similar orthogonal clusters are found in the ICA

plots after zoom-in of the nervous, immune system
and diverse tissues. The obtained clusters reveal groups
of tissues which are governed by independent sets of
genes with enhanced resolution. For example one finds
that telencephalon tissues (dark yellow circles in the
ICA of nervous tissues) form one linear cluster which
can be attributed to a category-specific spot in the
zoom-in SOM images (see Additional file 1 for details).
The linear clusters formed by muscle (green circles)
and epithelium (cyan) tissues are oriented in perpendi-
cular direction in the zoom-in ICA plot of the ‘diverse
tissues’. Both clusters are characterized by specific
metagene spots in the SOM images after zoom-in. Tis-
sues with mixed spot patterns due to different tissue
components such as tongue are located at intermediate
positions between that of the pure tissue components.
We also generated three-dimensional ICA-plot to
assess the third main independent component (see
Additional file 1). These plots reveal that the

Figure 11 Second level SOM and ICA plot of all 67 tissues and
zoom-in views of the 31 diverse tissues, the 20 nervous tissues
and the 11 immune system tissues (see arrows). Note that the
nervous and immune tissue samples are re-colored in the zoom-in
maps according to the sub-categorization of tissues applied (see
Additional file 1 for details).
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characteristic pattern of orthogonal linear clusters of
selected tissue categories can extend into the third
dimension.
The second-level SOM and ICA plots similarly

arrange the tissues samples. However, non-linear scaling
of the SOM partly disturbs the linear arrangement of
samples observed in the ICA plots. For example, the lin-
ear ICA-cluster of the nervous tissues (grey circles)
transform into a slightly more compact cluster in the
2nd level SOM. On the other hand, the 2nd level SOM
more in detail resolves small differences between the
expression profiles (see, e.g. the zoom-in of the 31
diverse tissues). Hence, although very similar, 2nd level
SOM and ICA visualize partly complementary aspects of
the data which can be studied more in detail using the
spot-texture of the individual SOM of the samples stu-
died. Tree-based similarity analysis provides an addi-
tional option to visualize the mutual relations between
the samples (see Additional file 1).

3. Conclusion
The microarray expression data of 67 human tissues was
used as an illustrative example to demonstrate the
strengths of the SOM method in disentangling large sets
of heterogeneous data. After suited preprocessing and
training, the SOM method decomposes the original data
into metagene expression profiles representing clusters
of correlated single genes. Metagene expression values
in the individual samples provide mosaic pictures visua-
lizing tissue-specific over- and underexpression in terms
of characteristic color-coded textures. They enable the
direct comparison of the expression of individual sam-
ples in a simple and intuitive way.
Particularly, the tissue-specific patterns of gene

expression were readily discernable in the obtained gal-
lery of individual tissue maps. They reveal a series of
about one handful stable over- and underexpression
spots which selectively characterize different tissue cate-
gories such as nervous, immune system, muscle, exo-
crine, epithelial or adipose tissues. Single tissues of
mixed characteristics such as tongue (composed of
expression spots found in muscle or epithelial tissues)
can be easily identified. Also anti-correlated expression
spots are detected which, for example, are overexpressed
in nervous tissues but underexpressed in the other tis-
sues and vice versa.
To extract the functional context of spot and meta-

gene related lists of single genes we applied overrepre-
sentation analysis with respect to pre-defined gene sets
of basically known functional impact. The mapping of
overrepresentation of a selected gene set into the SOM
mosaic provides a ‘functional’ map showing areas which
are potentially relevant for this function. Tissue related
spots typically contain enriched populations of function-

related gene sets well corresponding to molecular pro-
cesses in the respective tissues. This result strongly sup-
ports the ‘guilt-by-association’ principle that coexpressed
genes are likely to be functionally associated. It, in turn,
implies the ability to define either new gene sets using
selected SOM spots or to verify and/or to amend exist-
ing ones.
The SOM method compresses the original set of high-

dimensional data in two consecutive steps: Firstly, simi-
lar expression profiles of single genes are collected into
metagene clusters, which reduces the number of rele-
vant features nearly by one order of magnitude in our
application. These metagene profiles can be understood
as a sort of ‘eigen-modes’ characterizing the multitude
of expression pattern inherent in the data. Secondly, the
textures of the obtained SOM are decomposed into a
few (typically less than one dozen) spots of similarly
(over- or under-) expressed metagenes. This ‘double
compression’ sequentially applies global (similar profiles)
and local (over-/underexpression in part of the samples)
criteria.
The use of metagene instead of single gene expression

reduces the dimension of the data and leads to an
increased discriminating power in downstream agglom-
erative analysis such as hierarchical clustering and inde-
pendent component analysis owing to essentially two
facts: Firstly, the set of metagenes better represents the
diversity of expression pattern inherent in the data and
secondly, it also possesses the better signal-to-noise
characteristics as a comparable collection of single
genes. Due to the better representativeness, metagene
lists are less sensitive to downstream filtering than lists
of single genes. Metagenes can be seen as a natural
choice to detect context-dependent patterns of gene
expression in complex data sets. SOM-spot clustering
provides groups of genes of higher sample-specificity
compared with selected alternative methods such as
non-negative matrix factorization, hierarchical clustering
and correlated gene set clustering.
Our example shows that SOM cartography transforms

large and heterogeneous sets of expression data into an
atlas of sample-specific texture maps which can be
directly compared in terms of similarities and dissimila-
rities. This global view on the behavior of defined mod-
ules of correlated and differentially expressed genes is
more intuitive than ranked lists of hundreds or thou-
sands of individual genes. Importantly, the dimension
reduction of the data does not entail the loss of primary
information in contrast to simple filtering approaches
which irretrievably removes part of the data. Instead, the
reduction of dimension is attained by the re-weighting
of primary information in the aggregation step. The
whole set of single gene expression profiles remains vir-
tually ‘hidden’ behind the metagenes. This primary
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information together with the respective gene annota-
tions can be extracted in later steps of analysis to inter-
pret the observed SOM textures using concepts of
molecular biological function.
Finally, the software used in this publication is avail-

able as CRAN package ‘oposSOM’.

4. Methods
4.1. Microarray data and preprocessing
Microarray raw intensity data (*.cel files, Affymetrix
HG-U133 plus 2 array) of M = 67 tissues each measured
in Rm = 1, 2... (m = 1...M) replicates were downloaded
from the Gene Expression Omnibus repository as the
‘human body index - transcriptional profiling’ - data set
(http://www.ncbi.nlm.nih.gov/geo, GEO accession no.
GSE7307; see Additional file 5 for the detailed list of
samples used).
Raw probe intensities are calibrated and transformed

into expression value using the hook method [33,34].
The expression values from all arrays are subsequently
divided into present and absent ones [35] and normal-
ized as described in the Additional file 1.
Logged expression values of each gene (e ≡ log10 E)

were transformed into differential expression values
relative to the mean expression of the particular gene in
the experimental series of tissues considered,

�e = e− < e>all tissues. (1)

Eq. (1) thus defines differential expression in units of
the logged fold change, logFC ≡ Δe.

4.2. SOM-mapping of gene expression profiles
In the next step, the preprocessed differential expression
values of the series of tissue samples, Δe, are processed
using the unsupervised machine learning method to
train a self organizing map (SOM) representing informa-
tion-rich diagrams. The SOM method applies a neural
network algorithm to project high dimensional data
onto a two-dimensional visualization space [1,36]. SOMs
have a strong visualization capability by presenting each
individual sample as an entity allowing its identification
in a series of samples. Each SOM still keeps full high-
resolution information about the co-expression pattern
of the genes in the samples studied.
We applied a home-made R-program [37] which uses

the CRAN package ‘som’ [38]. The SOM-algorithm
assigns the expression profiles of the N input genes
measured under M conditions to a number of K < N
rectangular ‘tiles’ (so-called SOM nodes), each of which
is characterized by one representative profile of meta-
gene expression given by a vector of length M, Δek

meta

= (Δek,1
meta, Δek,2

meta,..., Δek,M
meta) (k = 1...K). It is

trained such that the profiles of the metagenes capture

the range of all individual expression pattern observed.
Each individual expression profile of a ‘real’ gene is
assigned to the metagene pattern of closest similarity
using the minimum Euclidian distance as criterion. Each
metagene thus serves as a sort of condensation nucleus
for a minicluster of nk ’real’ genes with similar expres-
sion profiles, Δek,i = (Δek,1,i, Δek,2,i,..., Δek,M,i), with i =

1...nk and N =
∑

k = 1...K
nk.

The metagenes are arranged in a two-dimensional grid
with K = x⋅y tiles where x and y are the number of tiles
per dimension. Most similar expression profiles of meta-
genes are located adjacent each to another. The correla-
tion between metagene expression decreases with the
mutual distance between the tiles on the mosaic. The
degree of similarity between adjacent metagenes
depends on the number of genes assigned to the respec-
tive metagenes being closer for larger populated meta-
genes and vice versa. For each condition m = 1...M a
SOM mosaic pattern is constructed by color-coding the
tiles k = 1...K according to its metagene expression, Δek,
m
meta. This way one obtains a coherent mosaic pattern

that is characteristic for each sample owing to the simi-
larity of adjacent metagenes. Since the SOMs assign the
same metagene to the same tile in all samples, they can
be directly compared to each other allowing immediate
identification of biologically interesting groups of genes.
Typically, the number of tiles to ‘pixelate’ the expres-

sion profiles is K = 10 × 10 - 100 × 100 = 102 - 104

with, on the average, nk = 5 - 100 genes per metagene.
The obtained mosaic pattern is usually more homoge-
neous than typical gene clustering heatmaps containing
typically about 102 clusters. This finer granularity of
SOM-maps is associated with a fewer number of genes
per unit (cluster/metagene) which in consequence gives
rise to a more detailed expression pattern.
The number of tiles per SOM image and also the lat-

tice-type (e.g., rectangular or hexagonal) potentially
affects the obtained cluster structure and color texture
of the images. In a preliminary study we found that the
number of tissue-specific ‘spots’ converges for x = y >
50 and weakly depends on the chosen lattice type.
Under these conditions the number of tiles exceeds the
number of relevant expression modules roughly by two-
orders of magnitude which allows their resolution with
high granularity. The contrast of the SOM images can
be adjusted using different color-scales to attenuate dif-
ferent aspects of the expression profiles with the aid of
pattern recognition, feature selection and/or data filter-
ing. In the supplementary information we compare
three options of contrast variation with the focus on
strong-to-moderate differential expression (log FC-
scale), very strong overexpression (WAD-scale) or weak-
to-moderate differential expression (log log FC-scale).
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Details of these methodical studies are presented in
Additional file 1 together with a schematic workflow of
our SOM-pipeline used. The complete set of analysis
results, as well as the current version of our R-program
‘oposSOM’ can be downloaded from http://som.izbi.uni-
leipzig.de. The program is also available as CRAN pack-
age via http://cran.r-project.org/.

4.3. Supporting maps
We define the following supporting maps which provide
additional information about the miniclusters defined by
each metagene and the associated real genes:

(i) The metagene expression profiling map uses a
coarse grained mosaic to provide an overview of the
courses of the metagene profiles. For visualization
purposes we use a coarse grained (e.g., 8 × 8) mosaic
with considerably less tiles than the mosaic grid
applied for the SOMs (60 × 60). The metagene pro-
files might be plotted together with the associated
single gene profiles.
(ii) The population map plots the number of real
genes per metagene in logarithmic scale, log nk.
(iii) The variance map illustrates the variability of
the expression profile of each metagene in the sam-
ples studied,

varmeta
k =

1
M - 1

M∑
m = 1

(
�emeta

k,m

)2
. (2)

(iv) The integral over-/under-expression summary
maps collect all over-/underexpression spots
observed in the individual sample SOMs into one
master map.

An extended set of supporting maps visualizing the
covariance and the Euclidian distance between the genes
and metagenes in each tile, the maxima and minima of
the metagene profiles in absolute scale and the correla-
tions between the metagenes are given as supporting
information (Additional file 1). These maps illustrate the
concerted changes of real genes in each of the metagene
clusters and of the metagenes in the SOM images. It is
shown that the Euclidian distance-based SOM algorithm
implicitly clusters correlated expression profiles together
in different regions of the SOM.

4.4. Gene set overrepresentation analysis
Gene set analysis requires the knowledge of predefined
gene sets to study their enrichment in gene lists which
are obtained from independent differential expression
analysis (see [39] for a critical review and references
cited therein). A large and diverse collection of such
sets can be downloaded from the ‘gene-set-enrichment-

analysis’-website (http://www.broadinstitute.org/gsea).
Particularly, we included in total 1454 gene sets in our
analysis according to the GO terms ‘biological process’
(825 sets), ‘molecular function’ (396 sets) and ‘cellular
component’ (233 sets). We use the term ‘overrepresenta-
tion’ to assign the probability to find members of a
given set in a list compared with their random appear-
ance independent of the values of their expression
scores. We use the hypergeometric distribution to char-
acterize overrepresentation in terms of a p-value which
estimates the probability to find a stronger overlap
between the list and the set by chance [40,41].

4.5. Grouping samples: Second level SOM cartography
We applied second-level SOM analysis as proposed by
Guo et al. [14] to visualize the similarity relations
between the individual SOM-metagene expression pat-
terns. Second-level SOM analysis uses the K metagene
expression profiles of the M samples as input. It then
clusters the samples and not the genes as in first-level
SOM analysis. Each tile of the second-level SOM mosaic
characterizes the expression profile of a representative
metasample defined by K metagene expression values.
The M samples were presented using a mosaic grid of
size K2SOM > M. Note that the number of metasamples
usually exceeds the number of real samples whereas in
first order SOM the number of metagenes is usually
much smaller than the number of real genes. A consid-
erable fraction of tiles of the second order SOM are
consequently empty with no sample assigned.

4.6. Estimating similarities: Clustering-, tree- and
independent component-analysis
One- and two-way hierarchical clustering [25] and inde-
pendent component analysis [42] were applied in two
versions using either the profiles of the SOM-metagenes
(metagene analysis) or the profiles of individual ‘real’
genes (single gene analysis) using the R-packages ‘stats’
and ‘fastICA’ for clustering and ICA, respectively. Hier-
archical clustering uses Euclidian distances between the
genes/metagenes as similarity measure, whereas ICA is
based on covariance. In addition to two-way hierarchical
clustering heatmaps, we generate pairwise correlation
maps (PCM) which visualize the Pearson correlation
coefficients between the gene expression profiles (meta-
genes or ‘real’ genes) in all pairwise combinations of
samples.

4.7. Filtering genes and metagenes
Optionally, the number of real genes and/or metagenes
used in the analyses is reduced by applying three types
of filters to exclude genes/metagenes of weak or of vir-
tually invariant differential expression from downstream
analysis: (i) FC-filtering: the genes/metagenes are ranked
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with decreasing absolute value of the fold change (FC)
for each sample and a certain number (e.g., 100, 1000
and 3600) of the top-most features is selected; (ii) Var-
iance filtering: the genes/metagenes are ranked with
decreasing variance of their expression profiles and a
certain number of top-most features is selected; (iii)
FDR-filtering: only genes/metagenes with a local false
discovery rate (FDR) smaller than a certain threshold
(0.005, 0.01, 0.05) were selected. The local FDR esti-
mates the probability of false positives in a list genes/
metagenes. We used a shrinkage t-score statistics to
assign p-values to each single gene the distribution of
which then provides its FDR-values. The FDR of the
metagenes is simply calculated as log-average of the sin-
gle gene FDR of the respective metagene cluster. Details
of the method will be published separately (Wirth and
Binder; submitted).

4.8. Filtering benchmarks
The performance of metagene and single gene filters
was compared using the following benchmarks (see also
Figure 8):
Hierarchical clustering: The ratio of the inter-class and

intra-class variance of the Euclidian distances between
the respective expression data (F-score) was used to esti-
mate the quality of the clusters.
Two-way hierarchical clustering: The percentage of

genes/metagenes attributed to tissue-specific clusters for
three tissue categories (nervous, immune systems and
epithelium) was used to estimate the representativeness
of the list.
ICA: The percentage of the variance of the indepen-

dent components IC1 and IC2 of one tissue category, %
= (varIC1+varIC2)one_category/(varIC1+varIC2)three_cate-
gories, was used to judge the relative size of the respective
cluster.

4.9. Measuring cluster specificity with entropy and
alternative clustering methods
The cluster-specificity estimates the degree to which the
expression of a selected cluster differs from ubiquitous
uniform expression of all clusters in a given tissue. It
can be measured in terms of the entropy [32],

Hm =
−1

log2(C)

C∑
c=1

pc,m·log2(pc,m) with pc,m = ec,m/
∑

C

ec,m (3)

where ec,m is the logged expression of the cluster
which is calculated as mean value over the expression
values of its members. The entropy is calculated for
each tissue sample m = 1...M where the sum runs over
all clusters c = 1...C. It has units of bits and ranges from
zero for tissues with only one highly expressed cluster
to 1 for tissues with uniformly expressed clusters.

For comparison with the SOM spot-clusters we
applied selected alternative methods of dimension
reduction: non-negative matrix factorization (NMF, see
[27-29]), hierarchical clustering (HC, see [25]) and cor-
related gene set clustering (CGS, [30,31]). For NMF-
and HC-clusterings we use the CRAN-package ‘NMF’
[43] and the basic package ‘stats’ [37], respectively.
CGS-clusters were obtained using an in-house R-pro-
gram [31].

Additional material

Additional file 1: The additional text describes methodical issues
such as the calibration of microarray data and the adjustment of
the size and topology of the SOM, additional supporting maps
which illustrate the covariance and correlation structure of the
metagene clusters, alternative options of contrast of the SOM
images, the filtering of metagenes/single genes and the
interpretation of cluster trees. Further details of zooming-in of tissue
subgroups are given together with the 3D-ICA plots of the tissues
studied.

Additional file 2: Whole set of 67 SOM expression profiles of
human tissues

Additional file 3: Expression profiles of human tissues in alternative
color scales.

Additional file 4: Agglomerative cluster analyses after single gene
and metagene filtering using FDR and variance criteria

Additional file 5: Table of samples studied The complete set of results
of our SOM analysis of the human tissue dataset can be found on our
website: http://som.izbi.uni-leipzig.de
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1. Preprocessing microarray intensities 
We consider a microarray data set consisting of the expression levels of N genes in M different sample 
categories such as different tissues, each measured in Rm (m=1…M) replicates. For gene expression 
studies the number of genes N is typically in the ten thousands, the number M of experimental 
conditions is typically in the tens to a few hundreds, and the number of replicates between one and ten. 
The used GeneChip microarrays provide typically eleven raw probe intensities per gene constituting 
one probe set. Raw probe intensity values of each of the M x Rm chips studied are calibrated and 
summarized into one expression value E per probe set using the hook method [27, 28]. The expression 
values of all arrays are subsequently quantile-normalized [29] (see Figure S 1 for illustration). 
The obtained distribution of expression values shows typically a bimodal shape: It’s left peak at 
smaller expression values and its right peak values were attributed to non-specific and specific 
hybridization, respectively [30]. The peak due to non-specific hybridization is non-informative with 
respect to the target genes which are therefore called ‘absent’ because their expression is smaller than 
the detection threshold of the method. The non-specific peak consequently characterizes the 
‘chemical’ background of the measurement.  
The distribution of expression data of each experimental series is then processed as follows: Firstly, 
the origin of the log-expression axis (log E=0) was positioned to agree with the peak position of the 
non-specific peak of the distribution. Secondly, both peaks are decomposed as described previously 
[30] assuming mirror symmetry of the left and right flanks of the non-specific peak (Figure S 1b). 
Thirdly, we make use of the decomposed distributions to estimate the probability that the specific 
expression of a selected gene is detected. This ‘present-call’-parameter is set to pc=0 and pc=1 for 
genes with expression values outside the region of overlap of both peaks (see Figure S 1c). In the 
range of overlap, the present call is calculated as the fraction of the local density of the specific signal 
contributing to the total signal distribution. The resulting value of pc roughly linearly scales between 
zero and one with increasing expression in this range (Figure S 1c). Fourth, the log-expression of each 
gene is scaled with its present call, i.e., e= pc(e’)*e’ where lower case e’ define the logged expression 
values, e’= log E. The used transformation thus considerably narrows the non-specific peak at position 
e’=0 of the expression axis while leaving the specific signal virtually unaffected. As a consequence, 
the variability of the signals of absent called and thus of non-informative probes is markedly reduced 
(Figure S 1c). This transformation enables to conserve the full set of available genes in the data set 
used for SOM analysis in contrast to data filtering which removes presumably uninformative probes 
from the data set prior to downstream analysis. 
Expression values of replicates of the same tissue were log-averaged and finally, the logged expression 
values of each gene were transformed into differential expression values relative to the mean 
expression of each particular gene in the experimental series of tissues considered (Figure S 1d),  
 
∆e = e - <e>all_tissues         (1) 
 
Eq. (1) thus defines differential expression in units of the logged fold change, logFC≡ ∆e.  
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Figure S 1: Normalization and adjustment of expression values: The different distributions of hook-calibrated 
expression values of the samples studied merge into one representative mean distribution after quantile 
normalization (panel a). Its double peaked shape is decomposed into two single peaked distributions due to non-
specific and specific hybridizations at small and larger expression values, respectively (b). The fraction of the 
specific signal contributing to the total signal density (dashed curve) is used as weighting coefficient of the 
expression values, e= pc(e’)*e’, which reshapes the total signal density (c). Finally, the expression values are 
normalized with respect to the logged mean expression of each gene (d). The large central peak refers to 
invariant genes under all conditions studied. 
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2. SOM-analysis pipeline and availability of the program 
Figure S 2 illustrates the SOM-pipeline used in this study: Raw microarray probe intensity data 
referring to an experimental series of different conditions was preprocessed including calibration, 
normalization and adjustment. The obtained expression values are then used in the SOM-algorithm. It 
translates the high-dimensional expression data into a two-dimensional grid of expression profiles. 
Each tile represents a cluster of individual genes (thin lines in the graphs, numbers of genes are given 
for each cluster) characterized by the expression profile of a representative metagene (thick lines). The 
expression profiles of the metagenes are then transformed into one mosaic image per condition which 
are shown in the row „expression profiles“ in Figure S 2. The tiles in these maps are color-coded to 
represent overexpression or underexpression of each metagene in the respective sample to map the 
underlying gene expression pattern. The parallel evaluation of multiple samples allows linking their 
overall profile pattern. For example, the metagene of the tile in the top left corner of the mosaic is 
underexpressed in sample no. 1 and overexpressed in sample no. 2 as indicated by the red and blue 
circles and the respective color-code in the respective pictures. Summary maps characterize different 
aspects of the individual SOM such as the population of metagenes or the summary of all 
overexpression peaks. Metagene expression can further be used for statistical and functional analysis 
as will be described in a separate publication (Wirth, Binder; submitted). In the last step, summary 
reports for each sample are generated providing lists of differentially expressed genes, enriched gene 
sets, error statistics and further information. The complete analysis results can be downloaded from 
http://som.izbi.uni-leipzig.de. Also the current version of our R-program can be downloaded from this 
website and as CRAN-package ‘oposSOM’ from http://cran.r-project.org/. 
 

http://som.izbi.uni-leipzig.de/
http://cran.r-project.org/
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Figure S 2: Expression profiling using self organizing maps (SOMs). 
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3. Adjusting the size of the SOM 
SOM machine learning is an unsupervised neural network algorithm that potentially clusters the data 
into biologically meaningful groups, e.g., of genes which are overexpressed in the same tissue. The 
number of tiles of the SOM-image (‘SOM’ size) is chosen by the researcher in a supervised fashion. 
Each tile of the map represents a separate mini-cluster of co-regulated single genes. Actually several 
neighboring tiles may cluster into one spot together because they collect genes of similar expression 
profiles in the experimental treatments studied. In our example each spot can be assigned to groups of 
co-expressed genes overexpressed in at minimum one tissue. The number of such spots is an intrinsic 
property of the expression pattern studied, which should not depend on the clustering algorithm and 
the particular parameter settings. Consequently, the SOM algorithm must be configured such that it 
produces a stable and consistent spot pattern. 
The SOM can be configured by the numbers of tiles used in the image K=x2 (x is the number of tiles in 
one direction assuming a quadratic mosaic), different topologies (e.g., with rectangular or hexagonal 
lattices), and different neighborhood functions describing the range and strength of interactions 
between the nodes during the training process. We studied the sensitivity of the resulting pattern of 
overexpression spots as a function of the SOM-size x=√K for rectangular (Figure S 3) and hexagonal 
lattices (Figure S 4) using a Gaussian neighborhood decaying according to a normal distribution 
around the central node [1], and for a rectangular lattice using a ‘bubble’ neighborhood which equally 
affects adjacent nodes (Figure S 5).  
The size of the SOM determines the resolution of the resulting mosaic image. For small SOM sizes 
each tile (or metagene) will contain a large number of single genes profiles whereas large sizes enable 
the distribution of the genes over a larger number of metagene clusters which more specifically can 
express the properties of the single gene profiles. Our analysis shows that with increasing size of the 
SOM the number of observed spot-clusters increases from two to at minimum nine (see panel a of the 
figures). Each of these spots can be associated with genes overexpressed in a particular group of 
tissues. The number of clusters and their assignment converges for SOM-sizes x>30 (hexagonal 
lattice) and x>50 (rectangular lattice) to a stable and virtually identical spot pattern. At these 
conditions the number of tiles (K=900 – 2,500) exceeds the number of spot clusters (9 -10) at 
minimum by two orders of magnitude. The hexagonal topology of the grid is a bit more homogeneous 
with respect to the directions on the SOM plane than the alternative rectangular topology. However the 
results are very similar with both choices. 
The correlation between the single gene profiles within each spot (intra-spot correlation) initially 
increases with increasing size of the SOM but then levels off to a constant value for x>20 (see part c of 
the figures). This asymptotic behavior indicates that larger SOM sizes essentially do not improve the 
obtained spot-clusters. Hence, the obtained clusters indeed reflect intrinsic properties of the overall 
expression pattern. Please note that this limit x>20 is slightly smaller than the limit discussed in the 
previous paragraph (x>30-50) because it judges the mean clustering behavior whereas the latter tree-
criterion refers to the appearance of the full set of expected spots. Contrarily, the correlation between 
the single gene profiles within each tile of the SOM (intra-tile correlation) permanently increases over 
the whole range of SOM-sizes considered without a limiting asymptotic level. Note that the 
distribution of the single genes over an increasing number of tiles allows the finer adjustment of 
mutual similarities of their expression profiles which will increase the respective intra-tile correlations. 
The largest SOM-size studied refers to a mean gene-to-metagene ratio of G/M=6. In other words, one 
finds six single genes in each of the tiles on the average (see also the population map below and in the 
main paper). 
The ‘bubble’ neighborhood conditions tend to ‘over-compartmentalize’ the SOM images where some 
of the tissue-specific spots become fragmented into two or more correlated subspots. 
  



7 
 

 
 
Figure S 3: Performance of SOM with two-dimensional rectangular mosaic topology and Gaussian neighborhood 
as a function of the number of tiles per axis (SOM size). a) The spot tree shows the tissue categories or 
individual tissues which can be identified by characteristic spots in the SOM-images. The respective 
overexpression summary maps are shown in the right part of the panel. b) The spot overexpression heatmap 
visualizes in which tissues (columns, the tissue categories are colour-coded) the spots are overexpressed (60x60 
SOM). c) Box plots of the intra-spot Pearson correlation coefficient of the expression profiles of the single genes 
(panel c) and of the respective intra-tile correlation coefficient as a function of the SOM-size. 
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Figure S 4: Performance of SOM with two-dimensional hexagonal mosaic topology and Gaussian neighborhood 
as a function of the number of tiles per axis (SOM size). See legend of Figure S 3 for further details. 
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Figure S 5: Performance of SOM with two-dimensional rectangular mosaic topology and ‘bubble’ neighborhood 
as a function of the number of tiles per axis (SOM size). See legend of Figure S 3. 
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4. Adjusting contrast 
Our standard SOM method scales the differential expression in units of the logged fold change of the 
metagenes, log FC = ∆ek,m

meta. The observed spots thus mark regions of over- and under-expression in 
the respective metagene profiles in logarithmic scale (Figure S 6a). Alternative scales, such as the 
double logarithmic log log FC ~ log ∆ek,m

meta, and the so-called weighted average difference score 
(WAD), are applied to vary the contrast of the texture of the SOM mosaics in order to highlight 
different aspects of the expression profiles. 
The WAD-score is calculated for each tile k and sample m according to 

( )
( ) ( )

meta meta
k,m k,mmeta

k,m k,m k,m k,m meta meta
k,m k,m

e min e
WAD w e with w

max e min e

∆ − ∆
= ⋅∆ =

∆ − ∆
 .  (2) 

The WAD score is a fold change (FC)-based score which ‘amplifies’ large expression values [2]. The 
main idea of the WAD method is based on the observation that potential marker genes tend to have 
high expression levels. Moreover, it intuitively considers the fact that the experimental error of 
expression values typically inflates at small expression levels in logarithmic scale [3]. Hence, the basic 
assumption for the WAD-approach to the gene ranking problem is that ‘strong signals are better 
signals’. It is suited especially for small sample sizes and it partly outperforms popular standard 
methods for determining differentially expressed genes when sensitivity and specificity are considered 
simultaneously [2, 4]. The WAD-score approximately changes as a quadratic function of differential 
expression, WAD ~ ∆e2 (see Eq. (2)), highlighting peaks due to overexpression more sharply with 
higher contrast as shown by the density distribution of the respective scores (Figure S 6, part b).  
As third option, the original FC color-code was rescaled into double-logarithmic units giving rise to a 
wider distribution in the positive and negative expression ranges, which strongly enhances the 
discrimination between up- and downregulated metagenes (Figure S 6, part c). The log log FC-scale 
thus expresses structured blue and red areas of characteristic shape which clearly identifies the 
borderline between the regions of over- and underexpression. These details are not or only hardly 
detected in the log FC- and WAD-scales. In contrast, FC- and even more the WAD-scales express a 
spot-like pattern which is characteristic for most of the samples.  
The used options of contrast variation enable to accentuate different ranges of metagene differential 
expression with the aid of pattern recognition, feature selection and/or data filtering with the focus on 
strong-to-moderate differential expression (log FC), very strong overexpression (WAD) or weak-to-
moderate differential expression (log log FC). For example, the three adipose tissues show very 
similar images with essentially the same overexpression spot in the log FC and WAD scales whereas 
the log log FC map reveals subtle differences between the underexpressed blue regions of ‘adipose 
omental’ tissue and the other types of adipose tissues. 
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Figure S 6: Contrast variation of the SOMs using different expression scores in selected tissues: Fold change of 
metagene expression relative to the mean expression in all samples studied in logarithmic (a, Eq. (1)) and 
double-logarithmic scale (c) and using the WAD-score (b, Eq. (2)). The right part of the figure shows the 
frequency distribution of the scores in logarithmic scale. The whole set of SOMs for all tissues studied is given 
as additional file). 
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5. Additional supporting maps 
we define the following supporting maps in addition to the supporting maps discussed in the main 
paper (expression profiling map, population map, variance map, integral over-/under-expression 
summary maps) to extract complementary information about the metagene and single gene profiles 
visualized in the SOM-images: 
 
(i) The covariance map visualizes the degree of concordance between the expression profiles of the 
real genes and that of the metagene in each metagene minicluster in terms of the cross correlation 
coefficient, 

 

( ) ( )

kn
meta

k k,i k k,i
i 1k

M M 2meta
k,i k,m k,m,i k,i k,m,i

m 1 m 1

1r cov / var var
n

1 1with cov e e and var e
M 1 M 1

=

= =

= ⋅

= ∆ ⋅∆ = ∆
− −

∑

∑ ∑
.  (3) 

 
(ii) The deviation map visualizes the degree of concordance between the expression profiles of the real 
genes in each metagene cluster using the quadratic mean of the Euclidian distances between each 
metagene and the respective single genes 

( )
kn M 22 2 meta

k k,i k,i k,m,i k,m
i 1 m 1k

1 1d d with d e e
n M 1= =

= = ∆ −∆
−∑ ∑  .   (4) 

 
These supporting maps use the same resolution of the two-dimensional mosaic grid as the SOM 
representation and appropriate color-scales for direct comparison. 
Elementary algebra links the Euclidian distance, the metagene variance and the covariance (see Eqs. 

(3)-(4)), ( )
k

k k ,i

n
2 meta

k k,i
i 1k

1d var var 2 cov
n =

= + − ⋅∑ , where vark
meta is the variance of the metagene 

profiles defined in the main paper. Under the assumption of equal variances of the single genes and of 
the metagene in each tile (

k ,i k

metavar var≈ ) one gets  

k

2
k

k meta

dr 1
2 var

= −  .        (5) 

Eq. (5) links the Euclidian distance used to train the SOM and to partition the single genes among the 
metagene miniclusters with the correlation coefficient. It shows that correlation coefficients near unity 
are obtained for close similarity in terms of the former measure (dk0) and/or if the metagene 
variance largely exceeds the squared Euclidian distance, 

k

2 meta
kd var . Note that the correlation 

coefficient vanishes for
k

2 meta
kd 2 var≈ . 

The population, variance, covariance and deviation maps shown in Figure S 7 provide information 
about special properties of the individual tissue SOMs using the same number of tiles. The population 
map reveals that the real genes inhomogeneously distribute among the tiles of the mosaic (Figure S 7a, 
see also the main paper). The tile of maximum population (nk=308, see the dark brown tile slightly left 
from the centre of the map in Figure S 7a) refers to genes with virtually invariant, mostly absent 
specific expression in all tissues studied. These genes form the strong peak in the distribution of 
differential expression shown in Figure S 1c and d. These invariant genes give rise to the dark blue 
spot in the central area of the variance map (Figure S 7b). The covariance and concordance maps show 
a similar but more noisy pattern as the variance map due to the fact that they explicitly process single 
gene profiles (Figure S 7c and d, respectively).  
The three measures variance, covariance and Euclidian distance plotted in different maps are linked 
properties (see Eq. (5)). Accordingly, the three maps confirm the concerted changes of real genes 
together with that of the associated metagenes in each tile (compare Figure S 7b and c). The deviation 
map more accentuates metagenes of low variance (blue areas in Figure S 7d).  
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Recall that the SOM algorithm uses the Euclidian distance between single and metagene profiles as 
similarity criterion to partition the single genes over the tiles of the mosaic. Close similarity in 
distance scale transforms into correlation coefficients near unity in the areas of relatively large 
metagene variance as predicted by Eq. (5) (see read areas in Figure S 7b and c). Contrarily, areas of 
relatively weak correlations largely agree with the regions of low metagene variance (see blue and 
green areas in Figure S 7b and c) which, in turn, lack marked over- and overexpression spots. 
 

 
 
Figure S 7: Supporting maps characterizing the expression profiles of metagenes: Population (panel a), 
variability (b), covariance (c, Eq. (3)) and deviation (d, Eq. (4)) maps. Panel (e) shows the variability of 
metagene expression values over the tissue-samples according to Eq.(6). The different colors indicate the 
different tissue categories. 
 
Alternatively one can apply correlation-based metrics such as the correlation coefficient between the 
metagenes and single genes. Correlation metrics however fail to differentiate between relatively 
invariant expression profiles of similar shape (small dk

2 and varmeta
k see (5)) and very noisy profiles 

(large dk
2 and varmeta

k). It has been shown that distance and correlation metrics provide different results 
in clustering gene expression data mainly because the correlation coefficient is prone to small 
measurement errors in uniform profiles [5]. Note also that the Euclidian distance-based SOM 
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algorithm implicitly clusters correlated profiles together in different regions of the SOM. The 
correlation map shown in Figure S 9 below illustrates this property. Hence, distance-based clustering 
enables subsequent analysis to identify correlated gene sets. 
The variance map shown in Figure S 7b characterizes the variability of each metagene profile by 
appropriate color coding. One can extract the complementary information by calculating the variability 
for each tissue-sample in terms of the respective standard deviation, 
 

( )
m

K 2tissue meta
k,m

k 1

1SD e
K 1 =

= ∆
− ∑ .       (6) 

The bar plot in panel e of Figure S 7 shows the variability of the expression pattern in a tissue-specific 
fashion. Interestingly, pancreas (endocrine tissues, red), liver (homeostasis, dark yellow), testis (sexual 
reproduction, pink) and T- and B-cells (immune system, blue) reveal large variability of the expression 
profiles within their tissue categories. Recently, similar variability measures based on entropy metrics 
of SOM metagene expression profiles revealed subtle transitions between stages of organogenesis [6]. 
Metagene expression pattern thus might provide a suited framework for the quantitative 
characterization of global expression properties to describe different modes of gene activity in the 
context of cellular differentiation, organ development and also heterogeneity of the tissue samples. 
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6. Differential expression summary maps  
The texture of the SOM visualizes ‘local’ expression properties in terms of spots due to high and low 
expression levels in the individual tissues. For an overview about all observed spots we calculate two 
types of integral ‘master’ maps characterizing over- and underexpression. Firstly, the metagene peak 
map shown in part a (overexpression) and b (underexpression) of Figure S 8 accentuates the maximum 
and minimum values of the metagene expression profiles, respectively. This map plots the metagene 
profiles in one common scale. They allow discriminating between subtle differences of the amplitudes 
of the maxima and minima considered. Here the expression maxima and minima are scaled in a 
sample-specific fashion which virtually amplifies spots referring to local maximum/minimum values 
in the metagene expression profiles. For example, one finds differently colored spots along the 
diagonal line in part a of Figure S 8 (spots B to E) which refer to maxima of different amplitude in the 
respective metagene profiles (e.g. the amplitude of spot C clearly exceeds that of spot B). 
 

 
Figure S 8: Grouping genes: Metagene maximum (a) and minimum (b) maps and tissue over (c) and 
underexpression (d) maps. Red/maroon spots mark overexpression/maxima, blue ones underexpression/minima. 
Selected spots are marked by letters (capital and lower case letters refer to maxima and minima, respectively). 
The maximum/minimum maps use a unique scaling for metagene expression whereas the over/underexpression 
map integrates tissue-specific spots from different scales. As a consequence they show a larger number of spots 
than the former ones. 
 
Alternatively we plot the sample overexpression overlay maps which transfer either the over- or the 
underexpression spots observed in the samples into one master map (part c and d of Figure S 8 
respectively; see also the main paper). Here, the respective maximum and minimum values observed 
in one of the samples scale equally showing, for example, equally colored spots along the diagonal 
line in part c of Figure S 8 (spots B to E, e.g. spots B and C are of equal amplitude). Note also that the 
overexpression spot C decomposes into three subspots which however strongly differ in their 
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amplitude in the original expression profiles (compare spot C in Figure S 8c and a). Both types of 
integral master maps thus reflect similar properties however in a complementary fashion, either with 
the focus on their absolute amplitude in common scale or on the identification of maxima and minima 
in the individual SOM maps independent of their amplitude. 
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7. Correlation maps  
The spot-like texture of the SOM results from the large similarity of the profiles of metagenes in 
adjacent tiles of the SOM image which however decreases with the mutual distance between the tiles 
in the SOM mosaic. So far we considered the differential expression (over- or underexpression) of the 
metagenes to identify the spots in the integral spot maps. One can also apply a different metrics based 
on the mutual correlation of the metagenes. Particularly, we used the following algorithm to determine 
groups of correlated metagenes in the SOM:  
(i) The Pearson correlation coefficients, rij

meta (i, j= 1…K) are calculated for all pairwise 
combinations of metagenes.  

(ii) Their maximum value rIJ=max(rij
meta) defines a pair of ‘source’ metagenes at positions i,j=I,J. 

They typically refer to neighbored tiles in the SOM.  
(iii) Then, the source metagenes serve as condensation nucleus for the associated group of correlated 

metagenes which comprises all metagenes meeting the condition , min(rI,j, rJ,j) > rthreshold where the 
threshold value for the correlation cluster is typically set to rthreshold= 0.9.  

(iv) The metagenes of this group were excluded from further analysis which starts again with step (ii) 
to determine the next group of correlated metagenes by processing the remaining metagenes.  

Steps (ii) – (iv) were repeated until all metagenes are clustered into groups of at minimum one 
member. The obtained groups of correlated metagenes are differently color-coded in the correlation 
summary map shown in Figure S 9. 
 

 
Figure S 9: Groups of correlated metagene profiles. Each colored area represents a group of metagenes which 
strongly correlate each with another with a correlation coefficient of r> rthreshold=0.9. The left panel shows the 
whole correlation pattern of all metagenes. The right part shows the 15 clusters of strongest correlation. The 
mean correlation coefficient averaged over all metagenes of each cluster is given within the circles. 
 
The clustering of correlated metagenes represents a complementary global approach which searches 
for metagenes of similar profiles. The obtained groups form disjunct clusters in the respective 
correlation map (Figure S 9). In general, correlation analysis provides a similar cluster structure 
compared with the integral over- and underexpression maps. The clusters of largest mutual 
correlations (Figure S 9b) are mostly located in the region of largest metagene variance in agreement 
with Eq. (5).  
Hence, SOM mapping based on Euclidian distance similarity metrics in the training step provides also 
a characteristic pattern with respect to the alternative correlation metrics. SOM mapping clusters 
correlated genes of highly variable expression profiles with pronounced maxima, but also genes of 
virtually invariant profiles. These two groups of genes tend to occupy different regions either along the 
edges or in the central area of the mosaic image, respectively. 
In summary, SOM machine learning provides a two-dimensional pattern of distinct spots each of 
which constitutes a cluster of metagenes. The metagene profiles of one spot are usually strongly 
correlated. Such clusters can be identified in different ways using complementary criteria such as the 
values of differential expression or the mutual correlation between the metagene profiles. In addition 
one finds also relatively uninformative clusters of highly populated but virtually invariant metagenes 
in the central area of the map.   
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8. Filtering metagenes and single genes 
We analyzed the tissue data set using three types of filters to reduce the number of single genes and 
metagenes, namely FC-expression, variance and significance (FDR-) filtering (see Table S 1  and the 
methodical section of the main paper). In the first case of expression filtering, the full set of absolute 
differential expression values of all genes (real genes and metagenes) under all measured conditions 
are ranked and a certain number of topmost genes in the list is considered for further analysis. In 
variance filtering the ranked list is generated using the variance of the expression profiles of the genes. 
These filterings improve the sensitivity of downstream discriminant analyses because they remove 
non- and less-informative weakly expressed, ‘noisy’ and/or virtually invariant genes from the data set. 
In the case of significance filtering the false discovery rate (FDR) of the features (metagenes or real 
genes) is used as filter criterion. Details of the statistical analysis of differential expression using SOM 
clustering will be presented elsewhere in a separate publication. 
Table S 1 shows that the filter criteria, when applied to the metagenes, gives rise to a gene-to-
metagene ratio between G/M= 6 and 28, whereas more stringent filters increase the G/M-values. For 
example, the 100 selected metagenes (FC-filtering) are representative for 1,487 single genes 
(G/M=14.9). In turn, selection of real genes roughly maintains this relation: The filtered 100 ‘real’ 
genes distribute over 8 metagenes only (G/M=12.5) which are all enclosed in the 100 members of the 
metagene list. Hence, both subsets of metagenes after metagene and single gene filtering completely 
intersect each other reflecting the high degree of correlation between the metagenes and the associated 
‘real’ genes. Figure S 10 shows the areas in the SOM mosaics covered by the filtered features and 
their mutual overlap after metagene and single gene filtering in terms of Venn diagrams. The left/right 
part of the figure highlights the selected metagenes/genes per tile of the SOM-mosaic. For example, 
the FC-3600 filter selects 100% of the metagenes but only 16% of the real genes. These genes 
accumulate essentially in the same areas of the SOM-mosaic as the metagenes, however when selected 
using the more stringent FC-1000 filter, which selects 28% of the metagenes only. The FC-1000 single 
gene filter, in turn, delivers genes which preferentially accumulate in the metagenes selected mostly by 
the more stringent FC-100 metagene filter (compare the right mosaics in Figure S 10 with the left ones 
in the respective rows below). 
Hence, equal numbers of ‘real’ genes and of metagenes selected by the respective filters reflect 
effectively different sample sizes of real genes owing to the G/M-compression. The metagene lists 
integrate the properties of roughly a tenfold longer list of ‘real’ genes and vice versa in our particular 
SOM setting. 
With increasing stringency of filtering, whole spot areas and thus also the respective expression 
profiles are progressively excluded from the list of filtered features. For example, the most stringent 
FC-100 metagene filter excludes a few areas selected by the FC-1000 single gene filtering thus 
revealing a decreased representativeness. Variance-filtering essentially provides similar relations 
between metagenes and real genes as FC-filtering (see Table S 1). 
As a third filter criterion, we applied a threshold of significance levels estimated in terms of the false 
discovery rate (FDR). The FDR-value defines the probability that each of the selected features is a 
differentially ‘null’ and thus a false positive one [7]. It applies to single genes and to the metagenes as 
well. The FDR-value of the metagenes was calculated as the mean value averaged over the FDR of the 
single genes associated with each metagene. 
The number of selected real genes after FDR-filtering is similar for both types of filters (for example, 
670 versus 387 for FDR<0.2; Figure S 11 and Table S 1).  The single genes spread over a much larger 
number of metagenes after filtering real genes than the metagenes which are directly selected after 
filtering metagenes (116 versus 14 for FDR<0.2, Figure S 11). This difference simply reflects the fact 
that genes selected by the single gene filter might be associated with metagenes which are not selected 
by the metagene filter (see the mosaics shown in Figure S 11). Hence, the FDR-filter, if applied to 
single genes, provides a similar number of real genes compared with the respective metagene filter. 
These genes however spread over a markedly larger number of metagenes and suggest an increased 
representativeness. In other words, significance filtering is roughly symmetric with respect to sample 
size but asymmetric with respect to ‘representativeness’ of the selected features. Figure S 12 illustrates 
the consequences of changed FDR-significance criteria. 
  



19 
 

 
Table S 1: Filtering metagenes and real genes 
 
filter  applied to metagenes applied to real genes 
 threshold #metagenes #real genes G/M a #metagenes #real genes G/M* a 
fold change 
(FC)b 

100 100 1,487 14.9 8 (8/0)c 100 (100/0)c 12.5 
1,000 1,000 7,770 7.8 127 (127/0) 1,000 (1,000/0) 7.9 
3,600 3,600 22,277 6.2 600 (600/0) 3,600 (3,600/0) 6.0 

        
variance 
(Var)d  

100 100 1,889 18.9 20 (19/1) 100 (97/3) 5,0 
1,000 1,000 9,924 9.9 126 (124/2) 1,000 (995/5) 7,9 

        
false 
discovery rate 
(fdr)e 

0.2 14 387 27.6 116 (14/102) 670 (317/353) 5.7 
0.4 666 6,576 9.8 1,390 (666/724) 7,088 (5,587/1,501) 5.1 
0.5 1,751 13,692 7.8 2,332 (1,751/581) 13,063 

(11,812/1,251) 
5.6 

        
 
a G/M, G/M*: ratio #real genes/#metagenes. All genes of the filtered metagenes are considered in the first case 

(G/M). In the second case (G/M*) the metagenes containing the filtered single genes are considered. 
Consequently not all single genes of the respective metagenes are taken into account and one gets on the 
averaged G/M>G/M* for the same criterion. 

b Toplist FC-expression filter: Metagenes/genes are ranked with decreasing FC-value. The number of items 
indicated on top of the list are selected. 

c (#in/#out): #in denotes the intersection between the number of metagenes/real genes sampled by filtering the 
metagenes and real genes. #out is the respective number of genes not sampled by the metagene filter 

d Toplist variance filter: Metagenes/genes are ranked with decreasing variance of their expression profile. The 
number of items indicated on top of the list are selected. 

e False discovery rate (fdr) significance filter, i.e. all metagenes/genes with smaller fdr-values than the 
indicated threshold are included in the list  
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Figure S 10: Filtering genes or metagenes by differential expression: Equal numbers of metagenes (left mosaics) 
and single genes (right mosaics) are selected using the FC-3600 (a), FC-1000 (b) and FC-100 (c) filters. The 
brown areas in the left part show the selected metagenes and the colored tiles in the right part the density of 
single genes (maroon to blue codes high to low densities). The Venn-diagrams illustrate the degree of overlap 
between the metagenes and genes after metagene and single gene filtering. Note that the FC-3600 filter if applied 
to single genes (right mosaic in panel a) selects features in the same areas of the mosaic as the FC-1000 filter if 
applied to metagenes (left mosaic in panel b). The similar result was found for FC-100 and FC-1000 filters if 
applied to metagenes and single genes, respectively. 
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Figure S 11: Filtering genes and metagenes by significance: Equal FDR-thresholds are applied to metagene (left 
mosaics) and single gene (right mosaics) lists selected using FDR< 0.5 (panel a), FDR<0.4 (panel b) and 
FDR<0.2 (panel c) filters. The brown areas in the left part show the selected metagenes and the colored tiles in 
the right part the density of single genes (maroon to blue codes high to low densities) selected by filtering 
metagene and single gene lists, respectively. The Venn-diagrams illustrate the degree of overlap between the 
metagenes and genes after metagene and single gene filtering. The single gene filter selects consistently a 
roughly twice as large number of metagenes and a slightly larger number of single genes than the respective 
metagene filters.  
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Figure S 12: Analogous to Figure S 11: Comparison of metagene/single gene filters using different FDR 
thresholds, 0.5/0.4 (panel a), 0.4/0.2 (b). The Venn diagrams indicate that the less stringent metagene filter shifts 
the number of metagenes and single genes selected towards the metagene filter. 
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9. Clustering metagenes and single genes 
Figure S 13 shows two simple cluster trees with different relative distances between their branching 
points, L1 and L2. The left one characterizes more compact clusters than the right one. It qualitatively 
explains the difference between the cluster trees obtained from single gene (bottom left) and metagene 
(bottom right) lists. In the chosen radial representation the cluster trees are projected onto unit circles. 
It normalizes the mean Euclidian distance between all samples to a common constant. The length of a 
particular branch in this plot consequently estimates its relative distance which is defined as the ratio 
of its Euclidian distance divided by the mean value averaged over all branches. The mean length of the 
‘outer’ branches, <L1>, then estimates the mean relative distance between the most similar samples on 
the lowest level of clustering whereas the mean length of the ‘inner’ branches estimates the mean 
mutual distance between the largest clusters. This distance of closest approach is markedly smaller for 
metagene gene cluster trees than for single gene trees meaning that the observed metagene clusters are 
more compact as illustrated schematically by the sketch in the middle part of Figure S 13. 
 

 
Figure S 13: Schematic illustration how the relative length of the branches in the tree transforms into the 
compactness of clusters: This distance of closest approach is markedly smaller for metagene gene cluster trees 
than for single genes meaning that the observed metagene clusters are more compact as illustrated schematically 
by the sketch in the part above.  
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10. Selecting metagenes using alternative methods: NMF, HC and correlated sets 
We analyzed the tissue data set using three alternative supervised clustering methods: non-negative 
matrix factorization (NMF, see [8-10]), hierarchical clustering (HC, see [11]) and correlated gene set 
clustering (CGS, [12-13]). The number of clusters was set to ten in correspondence with the number of 
overexpression spots detected in the SOM images. 
Figure S 14 illustrates the distribution of the genes of the five leading clusters in the SOM-images. 
NMF generates relatively diffuse clusters which spread over wider areas of the SOM. The first two 
HC clusters also show diffuse patterns whereas the remaining ones localize in relatively small areas of 
the map. Finally, CGS also generates localized but partly redundant clusters: Three out of five of them 
occupy the top left corner of the map which was assigned to genes overexpressed in nervous tissues. 
The cluster heatmaps in Figure S 15 further confirm this observation: The genes which are specifically 
overexpressed in nervous tissues are captured by at minimum five of the ten CGS-clusters. HC 
generates two to three of such ‘nervous system’-clusters whereas SOM provides only one spot which 
collects virtually all genes overexpresssed in nervous tissues. Note also that SOM and HC show 
clusters of genes specifically expressed in muscle tissues whereas CGS is unable to collect these genes 
into a separate cluster. In contrast, the NMF-clusters are clearly not redundant but, on the other hand, 
most of them are overxpressed in diverse tissue categories and thus unspecific for these tissue groups. 
 

 
 
Figure S 14: Cluster-specific population maps of the five leading clusters obtained by alternative methods. SOM-
clusters occupied by single genes from the respective clusters are marked by dark dots.  
  



25 
 

 
 
Figure S 15: Metagene cluster heatmap (left part) and PCM (right part) of the metagene expression obtained 
from different methods. The cluster heatmap visualizes the expression of the metagenes referring to the ten 
clusters used in all tissue samples. The color bar on top of the heatmap assigns the tissue categories. The PCM 
illustrates sample-to-sample similarities as seen by the metagenes obtained using the different clustering 
methods. 
 
Thus SOM clustering obviously outperforms the alternative methods in terms of representativeness 
with respect to the tissue categories studied. The redundancy of clusters collecting genes which are 
highly expressed in nervous tissues provided especially by CGS and, to a less degree, by HC can be 
attributed to the relatively large number of genes in this cluster as discussed in the context of data 
filtering. Note that SOM removes this redundancy by appropriate re-weighting of these genes as 
argued in the main paper. 
Note that SOM, HC and CGS cluster genes together which show similar profiles in a series of samples 
using either distance or correlation metrics. Such groups of co-expressed genes can be interpreted in a 
common functional context based on the guilt-by-association heuristics [14]. Instead, NMF yields a 
sparse parts-based representation [8] where parts are NMF-metagenes which can overlap and thus 
expose the participation of single genes in multiple biological processes [9]. Particularly, NMF 
decomposes the gene expression patterns as an additive combination of NMF-metagenes whereas 
SOM, HC and CGS use a decomposition that insists mutual exclusion of features. In other words, 
NMF-metagenes are non-specific for single tissues and tissue categories per definition since they 
imply an alternative context dependency. The functional meaning of this polysemous decomposition 
of NMF in comparison with the exclusive guild-by-association decomposition will be addressed 
separately. Figure S 16 compares enlarged versions of the overexpression heatmaps of SOM- and 
NMF-metagene clusters together with the top-three overrepresented gene sets. NMF-metagenes 
enriched with genes related to chromosome function (2nd cluster from the top), to ribosome function 
(8th) and to translational initiation (10th) spread over several tissue categories.  
All clustering methods studied produce similar PCMs (Figure S 15) revealing the same three main 
groups of tissue (nervous, immune system and the remaining diverse group) as correlated clusters 
along the diagonal line. SOM-clustering clearly outperforms the other methods in terms of the 
contrasts of the maps showing the largest gradient of the correlation coefficients. Figure S 16 further 
supports this finding: Intra-category correlation coefficients of the SOM-metagenes show the sharpest 
distribution near unity and inter-category correlation coefficients of SOM and HC show the sharpest 
distribution near minus one. These differences become even more pronounced for the respective 
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metagene-correlations of nervous tissues which are calculated separately as described in the main 
paper. 

 
 

 
Figure S 16: Cluster overexpression heatmap of SOM- (part above) and NMF-metagens. The right part lists the 
three leading gene sets overrepresented in each of the clusters. 
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Figure S 17: Histogram of Pearson correlation coefficients for all pairwise combinations of metagene expression 
profiles between tissues of the same (intra category) and of different (inter category) categories. Intra- and inter 
category histograms are calculated for all tissues and for nervous tissue only using different clustering methods. 
The respective histograms of the SOM method are taken from the main paper. 
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11. Sample- and spot-related similarity trees 
We visualized the sample-to-sample correlation pattern of metagene expression using the pairwise 
correlation map (PCM, see the main paper). Alternatively, one can plot the maximum spanning tree 
(MST) which is constructed as unidirectional graph connecting samples of strongest mutual 
correlations of their metagenes (Figure S 17). The MST reveals the predominant similarity relations 
between the tissues which are not clearly evident in the PCM and/or ICA plots. Most of the tissue 
categories cluster together along the MST-backbone and/or in distinct side branches with a few 
exceptions: For example, small intestine is located adjacent to muscle tissues on one side and to 
tongue on the other side owing to the presence of the muscle related metagene overexpression spot B 
in the respective SOM as discussed in the main paper. Tissues showing spot D related to epithelium 
such as myometrium, ovary and adrenal gland are found in one branch together with adipose tissues 
also showing spot D. Thyroid gland and stomach fundus group together with homeostasis tissues into 
one branch due to the common presence of metagene spot C related to homeostasis. On the other hand, 
pituitary gland is also part of the cluster of nervous tissues because it strongly expresses the nervous 
spot A in its SOM. 

 
Figure S 18: Maximum spanning tree (MST) of the tissue samples studied (sample tree). The MST is calculated 
using the correlation matrix of the metagenes shown in the PCM (see main paper). Nervous and immune systems 
tissues aggregate into well separated clusters. Note that also the remaining tissues partly segregate according to 
the predefined tissue categories. 
 
Hence, most of the similarity relations expressed by the MST can be simply rationalized in terms of 
the spot pattern observed in the different SOM without the explicit need to consider the individual 
metagenes. This result implies to make use of the particular spot pattern of the SOM images and to 
establish similarity relations between the tissues on a more coarse level of data reduction. With this 
objective we generated a ‘spot expression matrix’ of size #spots x #samples in the first step. In this 
matrix, the spot profile of each tissue is characterized by one column containing the mean expression 
values averaged over all metagenes of each overexpression spot. Then we construct the spot tree as the 
respective maximum spanning tree connecting spots of strongest correlation in all pairwise 
combinations of the row-vectors of the spot matrix, i.e. the spot profiles over all samples. The spot tree 
consequently characterizes similarities between the spots in terms of their common expression in 
different tissues. In contrast, the sample tree characterizes the similarities between the samples in 
terms of the degree of correlations between their metagenes. 
Each of the nodes of the obtained spot tree in Figure S 18 thus refers to one particular spot. Its position 
and size is depicted in a small mosaic together with a pie chart the sectors of which visualize the 
tissues expressing this particular spot. The spot tree consequently visualizes the specificity of each 
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spot to characterize only one tissue category, such as spot A or E which are found exclusively either in 
nervous tissues or in testis, respectively. Contrarily, the highly degenerated spot D at the opposite end 
of the tree is commonly expressed in most of the tissue categories. 
Note also that the marker spot F for immune system tissues is located in the centre of the backbone of 
the spot tree in Figure S 18 whereas immune system tissues occupy a peripheral position in the tissue 
tree in Figure S 17. This difference shows that the overall metagene expression profile of immune 
systems tissues is relatively unique whereas the selected immune spot F is commonly found in several 
tissue categories. For muscle tissues and the muscle spot B one observes the opposite relation, i.e. the 
spot is relatively specific for muscle tissues, the SOM-images of which are however contaminated by 
the relatively unspecific spot D to 60%. These examples illustrate the different and partly 
complementary information of spot- and tissue-related similarity relations. 
 

 
 
Figure S 19: The spot tree is calculated as the maximum spanning tree of the correlations between the mean 
metagene expression profiles of the overexpression spots observed in the tissues studied. It characterizes 
similarities between the spots in terms of their common expression in different tissues in contrast to the sample 
tree in the previous figure which characterizes the similarities between the samples in terms of the degree of 
correlations between their metagenes. Each node refers to one spot which is shown in maroon color in the 
respective quadratic maps and labeled with the capital letters used also in the main paper to assign the spots. The 
nodes are shown as pie-charts illustrating the tissue category expressing this spot (see the assignment in the top-
right part of the figure). The radius of the pie-segments is scaled with the percentage of tissues of the respective 
category. The radius of the grey circles refers to 100%. For example, spot D is very commonly found in nine 
tissue category whereas spots A and B are specific for nervous and muscle tissues, respectively.  
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12. Zooming in: Expression map of nervous tissues 
SOM expression profiles show very similar spot pattern for tissues of the same category in some 
cases. For example, the profiles of nervous system tissues are commonly characterized by highly 
expressed metagenes in spot A located in the top left corner of the mosaic (see the main paper). Subtle 
individual characteristics are visible in the blue regions of underexpressed genes (see also the 
respective SOM images in log log FC scale in the additional material). The PCM-heatmap of all tissue 
reveals that most of these underexpressed metagenes are specifically overexpressed in tissues of other, 
‘non-nervous’ categories. Hence, nervous tissues are characterized by the overexpression of a specific 
set of metagenes which, on the other hand, are underexpressed in the other, non-nervous tissues. In 
turn, metagenes overexpressed in these non-nervous tissues are mostly underexpressed in nervous 
tissues as a rule of thumb. 
To get further insights into the specifics of gene expression of this tissue category we applied a ‘zoom-
in’ step which trains a new SOM using the reduced set of the 20 nervous tissues samples only. The 
obtained expression images reveal a much more diverse spot pattern of different subcategories of 
nervous tissues than the images obtained from the whole set of tissues discussed so far (Figure S 19a). 
For example, the SOM images of cerebral cortex tissues (first row in Figure S 19a: frontal lobe, 
occipital lobe, parietal lobe and temporal lobe) are clearly different from the other ones. Corpus 
callosum stands out as an outlier in the second row of profiles in Figure S 19a collecting telecephalon 
tissues. On the other hand, the spot pattern of corpus callosum resembles that of subthalamic nucleus 
in the subcategory of diencephalon tissues and also that of three tissues of the mesencephalon category 
(third and fourth row in Figure S 19a, respectively). Finally, globus palidus (fourth row, 
mesencephalon tissues) and especially cerebellum (fifth row, rhombencephalon tissues) reveal unique 
overexpression spot characteristics among all nervous tissues. The overexpression-spot map in part b 
of Figure S 19 and Table S 2 assign the most prominent overexpression spots. 
 

 
 
Figure S 20: Zoom-in expression profiles of 20 selected nervous tissues (panel a) and overexpression summary 
map (panel b). Note that the profiles reveal a much more diverse spot pattern after zoom-in. Selected spots are 
marked in the summary map in panel b and assigned in Table S 2. 
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Table S 2: Assignment of selected overexpression spots in nervous tissues. 
 

Spot Tissue 
A Corpus callosum (8), medulla (19), spinal cord (20) 

Mesencephalon: midbrain, nodose nucleus, substantia nigra (15-17) 
B Specific for cerebellum (18) 
C Hippocampus (9), (corpus callosum (8)), (subthalmatic nucleus (12)) 
D Hypothalamus (11), thalamus (13) 
E Specific for cortex cerebri (1-4) 
F Globus pallidus (14), (caudate nucleus (7)) 
G Specific for telencephalon (5-10) 
H Specific for cortex cerebri (1-4) 

Specific for most telencephalon samples (5-7,9-10) 
 
 

 
 
Figure S 21: The overexpression spot heatmap heatmap shows the mean expression of metagenes of each spot in 
the different nervous tissues. The legend on the right part assigns the three topmost enriched GO gene sets in 
each spot labeled A – H (see also Figure S 19b).  
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Figure S 22: Spot correspondence between the original overexpression map referring to all tissues (‘all samples 
overexpression map’) and the zoom-in overrepresentation map generated from nervous system tissues only. The 
heatmap in the top right part of the figure color-codes the degree of overlap between all pairwise combination of 
spots from both maps (red: >10%; yellow: 1%>; white: 0%). Note that the genes from spot A in the original 
SOM referring to the nervous system tissues transfer to a high degree into spot H of the zoom-in map. The three 
small overrepresentation maps in the left part illustrate the redistribution of genes from selected spots of the 
zoom-in map into the total map. 
 
The zoom-in SOM of nervous tissues show ‘new’ textures of characteristic over- and underexpression 
spots which reflect the expression profiles of the tissues of interest more in detail than the original 
SOM. The newly generated spot pattern differs from the previous one in two respects: Firstly, the 
metagene profiles cover a reduced range of microstates which increases the resolution of the metagene 
profiles and results in the partial redistribution of the real genes over the metagene clusters. Secondly, 
the reference level of differential expression of each gene is defined by its mean value in the pool of 
all samples considered. It might shift owing to the altered ensemble of samples with consequences for 
the over- and underexpression pattern. Due to both effects there is no simple one-to-one relation 
between the spots and the associated metagenes in the original and the zoom-in SOM. Moreover, even 
equivalent metagene profiles might be located in different regions of the respective SOM due to the 
independent training runs. 
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Figure S 21 compares the overexpression summary maps of the previous ‘all samples’ map with the 
‘zoom-in’ map of nervous tissues. The heatmap in the figure assesses the correspondence between 
both overexpression maps in terms of the fraction of common single genes in all pairwise combination 
of spots taken from both maps. Nervous tissues are characterized by one strong overexpression spot A 
in the top left corner of the original SOM which contains enriched fractions of genes from gene sets 
associated with nervous function. This spot transforms with a high degree of overlap into spot H in the 
bottom right corner of the zoom-in map. Enrichment analysis shows that it indeed contains a largely 
enriched fraction of genes from the same gene sets which are always enriched in the nervous spot A of 
the original map.  
The overexpression heatmap clearly confirms the enrichment of gene sets directly related to nervous 
system in spot H (Figure S 20). It also reveals that this spot contains a more diverse expression profile 
compared with the respective profile of spot A in the nervous tissues (see the main paper). The zoom-
in map obviously amplifies subtle details of the expression profile of these genes in the reduced subset 
selected for zoom-in analysis. 
Interestingly, the zoom-in map of nervous tissues also amplifies the expression profiles of gene sets 
not clearly related to nervous system and not evident in the original overall map. For example, the 
genes in spot A of the zoom-in map markedly overlap with the genes in spot D and F in the original 
‘all-samples’ overexpression map. These spots are related to tissue development and immune 
response, respectively. Spot A indeed contains an enriched number of genes associated with ‘immune 
response processes’ but also genes related to ‘signal transduction’ whereas the gene sets related to 
‘tissue development’ are not among the top-enriched sets. Note also that the genes from the ‘immune 
system’ spot F in the corner right below in the original map do not simply shift into spot A of the 
zoom-in map. Instead, they accumulate also in other spots such as spot F which enriches genes related 
to ‘nucleus transport’ function. These examples illustrate the fact that the zoom-in step re-distributes 
part of the genes into metagene expression profiles not clearly resolved in the original map with 
consequences for the particular enrichment pattern and its tissue specificity. For example, spots A and 
H of the zoom-in map are overexpressed in different nervous tissues, among others, in mesencephalon 
(blue) and cortex cerebri (red), respectively (Figure S 20). 
Figure S 22 shows the results of different similarity analyses using the 100 topmost differentially 
expressed metagenes. Essentially three groups of nervous tissues can be identified, namely one 
containing three telencephalon tissues (olive bars/circles in the PCM/MST plots) and two mixed 
groups, where one is essentially dominated by the characteristics of cortex cerebri tissues (red) and the 
second one by the characteristics of mesencephalon tissues (blue). The cerebellum sample is isolated 
from these groups. These results clearly show that zooming-in largely improves resolution and 
discrimination between the samples of a selected tissue subgroup. 
Taking together, the resolution power of SOM analysis is improved in a zooming-in step which trains 
the SOMs using a subensemble of samples. Effectively this step adapts the expression profiles of the 
metagenes to the smaller bandwidth of expression values observed in the subensemble compared with 
the wider range observed in the whole ensemble of tissues. Note that machine learning maps the 
multidimensional space of differential expression of the considered samples onto that of the 
metagenes. It automatically adapts to the maximum amplitudes and to the degree of similarity between 
the samples considered.  
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Figure S 23: Zooming-in characteristics of nervous tissues: Clustering tree (panel a), two-way hierarchical 
clustering heatmap (b), MST (c), and PCM (d) of 20 selected nervous tissues based on the 100 topmost 
differentially expressed metagenes of nervous tissues. The different categories of nervous tissues are color-coded 
as assigned by the colors of the captions in Figure S 19a. 
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13. Zooming in: Expression map of immune system tissues 
We applied the zoom-in step to the 11 samples of the immune system category in analogy to the 
zoom-in of nervous tissues. The expression profiles of these samples shown in Figure S 23a reveal an 
improved resolution (compare with the original SOM obtained from the whole set of tissues). For 
example, the spot pattern of lymphocytes and of primary and secondary lymphoid organs can be better 
distinguished: Spot A is overexpressed in resting T-cells and spot C in activated T-cells only (see 
Figure S 23b). Spot B collects genes commonly overexpressed in all T-cells. Table S 3 assigns the 
most prominent overexpression spots to the different immune tissues. 
Spot correspondence analysis shows that the genes from the characteristic ‘immune system’ 
overexpression spot F observed in the original SOM (see the main paper) distribute over 3 -4 new 
spots after zooming-in (A, B, C, G1, see Figure S 25). The leading gene sets are attributed to ‘immune 
systems process’ (spot A), ‘signal transduction’ (B), ‘programmed cell death’ (C) and again ‘immune 
systems process’ (G1) as illustrated in Figure S 24. Spots A, B and partly C are overexpressed in T-
cells whereas spot G1 is overexpressed in B cells. Hence, the re-sorting of genes over a new collection 
of overexpression spots in the zoom-in map splits the gene sets ‘immune systems process’ and 
‘defense response’ into two types of genes showing high expression either in T- or in B-cells. In the 
original SOM both types of genes are found together in the immune spot F. Table S 4 provides 
examples of such genes which can be partly assigned to T- or B-cell function.  
Genes from another spot originally assigned to ‘cell cycle process’ (spot H, see [15]) remain basically 
localized within one spot after zoom-in which however strongly enriches also genes from other gene 
sets such as ‘defense response’ (spot H, Figure S 24) which is originally enriched in the immune 
systems spot F before zoom-in (see [15]). Hence, spot H and also spot G2 collect genes originally 
distributed over different spots (Figure S 25). Taken together, one observes two tendencies after zoom-
in, namely the split of enriched gene sets from one into several spots and the aggregation the gene sets 
from several spots into one leading one. 
The results of downstream cluster- and correlation-analysis are shown in Figure S 26. One- and two-
way hierarchical clustering (Figure S 26a,b) reveal close relation of resting and activated modes of B-
cells and the two types of T-cells, respectively. This is also confirmed by correlation analysis which 
provides PCM and MST plots (Figure S 26c and d): lymphocyte subtypes are highly correlated and 
clearly separated from lymphatic organs. 
 

 
 
 
Figure S 24: Zoom-in expression profiles (panel a) and overexpression summary map (panel b) of 11 samples 
from 3 categories of the immune system. Selected spots are marked in the summary map and assigned in Table S 
3. 
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Table S 3: Assignment of selected overexpression spots in immune system samples (see also Figure S 23). 
 

Spot Tissue 
A Resting T-Cells (4,6) 
B All T-Cells: CD4+/CD8+; resting/activated (3-6) 
C Activated T-cells (3,5) 
D Specific for thymus (10) 
E Lymph node (8), spleen (9) 
F Specific for tonsil (11) 
G1, G2 B-cells (1,2) 
H Bone marrow (7), thymus (10) 

 
 

 
 
Figure S 25: Overexpression spot heatmap of immune systems tissues. The legend on the right part assigns the 
three topmost enriched GO gene sets in each spot labeled A – H (see also Figure S 23b). 
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Figure S 26: Spot correspondence between the original overexpression map referring to all tissues (‘all samples 
overexpression map’) and the zoom-in overrepresentation map generated from immune system tissues only. The 
heatmap in the top right part of the figure color codes the degree of overlap between all pairwise combination of 
spots from both maps (red: >15%; yellow: 1%>; white: 0%). Note that the genes from spot F in the original 
SOM referring to the immune systems tissues transfer essentially into spot A, B and C of the zoom-in map. The 
three small overrepresentation maps in the left part illustrate the redistribution of genes from selected spots of the 
zoom-in map into the total map. 
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Table S 4: Genes of the gene sets overrepresented in different spots of the zoom-in map 
 
Gene set T-cells:  

overrepresented in spot A 
B-cells: 
overrepresented in spot G1 

Immune systems 
process 

IL8 (interleukin 8) 
CD3D (T-cell receptor) 
IL2 (interleukin 2, T-cell growth factor) 
CCL4 (chemokine (C-C motif) ligand 4) 
CST7 (cystatin F (leukocystatin)) 
IL7R (interleukin 7 receptor, essential for the 
differentiation and activation of T 
lymphocytes) 

CCL22 (chemokine (C-C motif) ligand 22)  
MS4A1 (B-lymphocyte antigen CD20) 
CD79A (B lymphocyte antigen receptor) 
CD79B (B lymphocyte antigen receptor) 
POU2AF1 (POU class 2 associating factor 1, 
essential for the response of B-cells to antigens) 
BLNK (B-cell linker) 

Defense response 
 

GNLY (granulysin, present in cytotoxic 
granules of cytotoxic T-cells) 
IL8 (interleukin 8) 
KLRG1 (killer cell lectin-like receptor) 
ITK (IL2-inducible T-cell kinase) 
CX3CR1 (chemokine receptor 1, involved in 
T-cell differentiation) 
CCL4 (chemokine (C-C motif) ligand 4) 

CCL22 (chemokine (C-C motif) ligand 22) 
CD40 (TNF receptor resting B cell activation) 
BLNK (B-cell linker) 
LY75 (lymphocyte antigen 75) 
HDAC9 (histone deacetylase 9) 
IL17RB (interleukin 17 receptor B) 
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Figure S 27: Zooming-in characteristics of the immune system samples: Clustering tree (panel a), two-way 
hierarchical clustering heatmap (b), MST (c) and PCM (d) expression fingerprints of 11 immune system 
samples, assigned to 3 categories, based on the 100 topmost differentially expressed metagenes. The different 
categories are color coded as assigned by the colors of the text of the captions in Figure S 23. 
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14. Zooming in: Expression map of 31 diverse tissues 
We applied zooming-in to 31 diverse tissues forming one of the three clusters in the ICA plots to 
better differentiate between the respective samples. This group of tissues is much more heterogeneous 
than the cluster of nervous and immune system tissues analyzed above. This collection of tissues 
subsumes the categories adipose, endocrine, homeostasis, digestion, exocrine, epithelium and muscle 
tissues which cluster relatively tightly together in the agglomerative analyses provided in [15]. Figure 
S 27 shows the resulting SOM profiles and the overexpression summary map. Compared with the 
original SOM one finds a higher number of overexpression spots despite smaller number of samples. 
This supports the conclusion that nervous and immune system samples dominate the metagene 
differential expression suppressing subtle differences within the set of 31 diverse tissues if analyzed 
together.  
The tissue specific spots B (muscle tissues), C1 (liver and kidney) and C2 (pancreas) of the original 
map transform virtually ‘one-to-one’ into the spot C, A and B of the zoom-in map, respectively 
(Figure S 29). They overrepresent essentially the same gene sets as the spots in the original map. Note 
however, that spots A and B are better resolved in the zoom-in map than spots C1 and C2 in the 
original map. On the other hand, the original spot D found in different tissues such as adipose and 
epithelial ones splits essentially into the three spots F, G and H which are selectively overexpressed in 
adipose tissue (spot F), stomach, lung, trachea and bronchus (G) and other epithelial tissues (H) with 
the different leading gene sets ‘plasma membrane’ (F), ‘immune system process’ (G) and ‘ectoderm 
development’ (H) after zoom-in, respectively. 
The results of cluster- and correlation-analyses are shown in Figure S 30. Notably, most of the tissues 
cluster together in agreement with their predefined categories. 
 

 
 
Figure S 28: Zoom-in expression profiles (panel a) and overexpression summary map (panel b) of a group of 31 
diverse tissues from 6 tissue categories poorly resolved in the central part of ICA-plots of all tissues. Selected 
spots are marked in the summary map and assigned in Table S 5 
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Table S 5: Assignment of selected overexpression spots in diverse tissues (see also  
Figure S 27). 
 

Spot Tissue 
A Specific for homeostasis samples (8-10) 
B Pancreas (6) 
C Specific for muscle samples: heart atrium, heart ventricle, 

skeletal muscle, deltoid muscle (27-30) 
D Thyroid gland (7) 
E Prostate (16), endometrium (26), myometrium (21) 
F Specific for adipose tissue (1-3) 
G Digestion: colon (11), stomach samples (13-15) 

Epithelium: bronchus (18), lung (20), trachea (25) 
H Specific for epithelium tissues (18-26) 

 
 

 
 
Figure S 29: Overexpression spot heatmap of immune systems tissues. The legend on the right part assigns the 
three topmost enriched GO gene sets in each spot labeled A – H (see also Figure S 27b).  
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Figure S 30: Spot correspondence between the original overexpression map referring to all tissues (‘all samples 
overexpression map’) and the zoom-in overrepresentation map generated from 31 diverse tissues only. The 
heatmap in the top right part of the figure color codes the degree of overlap between all pairwise combination of 
spots from both maps (red: >50%; orange:> 10%; yellow: 1%>; white: 0%). The three small overrepresentation 
maps in the left part illustrate the redistribution of genes from selected spots of the zoom-in map into the total 
map. 
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Figure S 31: Zooming-in characteristics of the group of diverse tissues: Clustering tree (panel a), two-way 
hierarchical clustering heatmap (b), MST (c) and PCM (d) expression fingerprints of 31 diverse tissues from 6 
tissue categories based on the 100 topmost differentially expressed metagenes. The different categories are color 
coded as assigned by the colors of the text of the captions in Figure S 27. 
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15. 2nd level SOM and 3D ICA maps  
Figure S 31 shows the second level SOM of all 67 human tissues studied using a coarse 9x9 grid: Each 
tissue is represented by its tissue number and the color of its previously assigned tissue category. In 
addition, representative first-level SOMs are shown in each of the occupied tiles representing the 
respective metasample. Note that second level SOM use a resolution where the number of mosaic tiles 
exceeds the number of samples. In consequence most tiles remain empty. 
 

 
Figure S 32: Second level SOM of the metagene expression profiles of all 67 samples: Each tissue is color-coded 
by the circles according to its tissue category and assigned by its number. The small mosaics show the relevant 
first level SOM pattern of the not-empty metasamples which might be occupied by up to six real samples. 
 
We also generated three dimensional ICA-plots to assess the third main component of variability. This 
plot reveals that the characteristic pattern of orthogonal linear clusters of selected tissue categories 
extends into the third dimension (see, e.g. the clusters of nervous system, immune system and 
epithelium tissues in the 3D-ICA of all tissues). Hence, the metagene-based ICA plots in two and three 
dimensions allow to disentangle tissue categories of virtually independent expression profiles. The 
responsible groups of genes can be identified using the spot pattern of the original SOM where they 
typically aggregate into metagene spots specifically overexpressed in the respective tissue category.  
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Figure S 33: Three-dimensional ICA plots of the tissues studied. Zoom-in views are shown in the right part of 
the figure. 
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