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Suitability of infrared microspectroscopic imaging for histopathology of the uterine cervix

Aims: Infrared microspectroscopy (IR-MSP) has been
proposed for automated histological tissue differentia-
tion of unstained specimens based on chemical analysis
of cell and extracellular constituents. This study aimed
to determine the accuracy of IR-MSP-based histopa-
thology of cervical carcinoma sections with complex
tissue architecture under practically relevant testing
conditions.
Methods and results: In total, 46 regions of interest,
covering an area of almost 50 mm2 on sections derived
from paraffin-embedded tissue of radical hysterectomy
specimens, were analysed by IR-MSP (nominal resolu-
tion �4.2 lm). More than 2.8 million pixel spectra that
were processed using fuzzy c-means clustering followed
by hierarchical cluster analysis permitted image seg-
mentation regarding different biochemical properties.

Linear image registration was applied to compare these
segmentation results with manual labelling on hae-
matoxylin and eosin-stained references (resolution
�0.7 lm). For recognition of nine tissue types, sensi-
tivities were 42–91% and specificities were 79–100%,
mostly being affected by peritumoral inflammatory
responses. Algorithmic variation of the outline of
dysplasia and carcinoma revealed a spatial preference
of false values in tissue transition areas.
Conclusions: This imaging technique has potential as a
new method for tissue characterization; however, the
recognition accuracy does not justify a pathologist-
independent tissue analysis, and the application is only
possible in combination with concomitant conven-
tional histopathology.
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Abbreviations: FCM, fuzzy c-means clustering; FPA, focal plane array; FTIR, Fourier-transform infrared; H&E,
haematoxylin and eosin; HCA, hierarchical cluster analysis; IR, infrared; IR-MSP, infrared microspectroscopy; PCA,
principal components analysis; ROI, region of interest; SIMCA, soft independent modelling of class analogies

Introduction

Infrared (IR) microspectroscopy (IR-MSP) is an emerg-
ing imaging technique providing molecular informa-

tion about metabolic and structural tissue status at
high resolution. Such modern Fourier-transform
infrared (FTIR) imaging systems, nowadays based on
focal plane array (FPA) detectors combined with
microscopic equipment, yield ‘spectrum pixels’ that
locally represent the complex information referring to a
certain spectral range of the electromagnetic waves.
The spectral data can be analysed by univariate
and multivariate spectrum pixel-related methods
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(e.g. pattern recognition procedures, functional group
mapping, and single-band analysis), and eventually
provide simple arbitrarily coloured images without any
staining procedure.1,2 All of this appears to be ideal for
an accurate, rapid, operator-independent and repro-
ducible approach to characterize tissue sections, as has
already been applied as a diagnostic tool for certain
tissue probes.

The broad application field of IR-MSP-based histopa-
thology has principally focused on the following
clinical problem areas: (i) discriminating normal tissue
from pathological or, particularly, malignant tissue
alterations (e.g. screening methods and frozen section-
ing);3–13 (ii) analysing complex tissue architectures (to
further objectify and specify visible light-based histo-
pathological assessment);1,3,14,15 (iii) localizing specific
tissue components and biomarkers;16–19 and (iv) eval-
uating biochemical variations within specific tissue
types over time (functional assays).17,20 Focusing on
the first two mentioned areas, exciting results with very
high values of accuracy have recently been reported for
recognition of benign and malignant lesions in several
tissues, including prostate, breast, pancreatic, oesoph-
agus, brain and colon tissue.2–8 However, previous
studies have been limited in both their impact and their
relevance concerning the number of analysed pixel
spectra of the validation datasets. Some have remained
below 1000,4,5,8,13 and the majority of datasets have
covered fewer than 500 000 spectra,3,9,11,12,15,18

whereas regions of interest (ROIs) were, in part,
restricted to well-defined areas.3,4,10,11 Therefore, qual-
ity assessments of only small areas have raised the
suspicion of a spatial-related selection bias.21 A single
study that analysed xenografted human colon carci-
nomas in a nude-mouse model comprised a very large
dataset but did not determine the exact accuracy for
tissue type recognition.22 Furthermore, the approach of
all previous studies was characterized by visual com-
parisons between IR-based segmentations and conven-
tional histopathology, which represents the diagnostic
‘gold standard’. This, however, means that real co-
registration is missing, and this introduces an avoid-
able error that severely affects all further assessments.
The successful translation of IR-MSP from a highly
promising method for basic research to applications for
clinical research and diagnostics clearly requires both
more comprehensive and less restricted investigations.

Encouraged by previous spectroscopic studies on
exfoliated cells from the uterine cervix23–25 and prom-
ising results of IR spectral mapping of normal, dysplastic
and neoplastic changes of human cervical tissue,26–28

we have used radial uterine cervix tissue sections
derived from patients with cervical cancer. For the first

time, we integrate both complete tissue segmentation of
haematoxylin and eosin (H&E)-stained tissue sections
and co-registration of IR-based and visible light-based
images in order to precisely evaluate the accuracy of
IR-MSP-based histopathology to an unprecedented
extent.

Materials and methods

patient characteristics, sample preparation,

workflow, and manual tissue segmentation

The study included a set of six randomly selected
patients with cervical cancer who underwent total
mesometrial resection,29 a special type of nerve-sparing
radical hysterectomy, with pelvic and possibly para-
aortic lymphadenectomy as the primary treatment, at
the Department of Obstetrics and Gynaecology, Leipzig
University. The distribution according to pertinent
clinical and histopathological variables is shown in
Table 1. Tumours were classified according to the
guidelines of the World Health Organization.30 In-
formed consent to take specimens for research after
clinical diagnosis was obtained.

The uterine cervix was opened lengthways, and radial
samples were used to prepare adjacent pairs of 10-lm-
thick tissue sections. One was mounted on a conven-
tional glass slide, stained with H&E, and imaged by
transmission light microscopy. This first section served
as a position reference and for identifying ROIs for IR
microspectroscopy on the second section mounted on an
IR-transparent calcium fluoride slide (Figure 1A,B). In
addition, the slide was deparaffinized by washing in
xylol and ethanol, according to the routine H&E staining
procedure. After IR spectroscopic data were acquired,
the section was also stained with H&E (Figure 1C).
Photomicrographs with a nominal image resolution of
�0.7 lm per square pixel were recorded with a digital
camera fitted to an inverse light microscope Olympus
IX70 (Olympus, Hamburg, Germany).

A sample size of 46 ROIs covering a total area of
49.864 mm2 was arbitrarily selected. ROIs were
defined with the aim of capturing all tissue types of a
respective section and, especially, for consideration of
complex transition areas near tissue boundaries.

Histopathological assessment and manual tissue type
segmentation of exactly the same ROIs (including small
peripheral margins) were performed by a trained
gynaecologic pathologist (L.-C.H.) in a blinded fashion
with respect to the IR segmentation result. The image-
editing software Corel Photo-Paint X3 (Corel, Ottawa,
ON, Canada) was used to delineate the different
tissue types, and the segmentation result was an
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inconsistency-free label image depicted with false
colours (Figure 2A,B). The distribution of a total of
nine distinct tissue types is summarized in Table S1. If
staining-caused deformations of the second section
previously used for IR-MSP were too pronounced, the
adjacent section used for position reference was instead
taken for manual segmentation in 24% of all 46 ROIs
(n = 11; see highlighted values in Table S2).

ir-msp data acquis it ion and preprocess ing

IR spectra were recorded with a Bruker IFS66 ⁄ S FTIR
spectrometer coupled to a Hyperion microscope and
equipped with a 64 · 64 FPA detector (Bruker Optik,
Ettlingen, Germany). Images of 4096 IR spectra at a
spectral resolution of 8 ⁄ cm were acquired with Opus
software (Bruker), with the FPA operated in continu-
ous-scan mode by co-adding 21 interferograms.
Nominal coverage of a single FPA detector element
corresponds to a tissue area of 4.2 · 4.2 lm2 at

·15 magnification. If the ROI area exceeded
267 · 267 lm2, a series of IR images were recorded
by moving the sample stage in increments of 267 lm
(mapping approach).

Data pretreatment included the merging of different IR
images into a single dataset, filtering, baseline correc-
tion, and normalization. A spectral range from 950 to
1800 ⁄ cm was captured, and to discriminate between
different tissue types, a reduced range from 950 to
1480 ⁄ cm was considered as a fingerprint region.
Different backgrounds and offsets in the spectra were
corrected by subtracting a linear baseline over the
considered ranges. Low-absorbance spectra with poor
signal-to-noise ratios were removed from further anal-
ysis (‘reject’ cluster no. 13). The spectra were further
scaled at the amide I band (1655 ⁄ cm) to obtain relative
intensities between zero and unity by multiplying by a
correction factor. This normalization is assumed to
compensate for the effect of global intensity changes
resulting from slight variations in sample thickness.

Table 1. Patient characteristics and morphological findings of all tumour specimens

Characteristic ⁄ feature

Patient ⁄ tumour

I II III IV V VI

Age (years) 39 36 68 51 50 68

pT (tumour size and
local spread)

1b1 1b2 2b 2b 2a 1b1

Tumour size (cm) (a ⁄ b ⁄ c) 2.5 ⁄ 3.0 ⁄ 2.2 4.9 ⁄ 4.0 ⁄ 3.6 2.7 ⁄ 3.6 ⁄ 1.3 5.2 ⁄ 4.0 ⁄ 2.5 2.7 ⁄ 2.5 ⁄ 0.9 2.0 ⁄ 2.0 ⁄ 0.5

pN (regional lymph nodes)*† 0 (0 ⁄ 48) 1 (3 ⁄ 34) 1 (1 ⁄ 35) 0 (0 ⁄ 34) 0 (0 ⁄ 59) 0 (0 ⁄ 43)

pM (metastases, distant
lymph nodes)*†

X 0 (0 ⁄ 6) 0 (0 ⁄ 10) X X X

Typing Adenocarcinoma SCC SCC SCC SCC SCC

Relative depth of cervical
stroma invasion (%)

100 100 100 100 100 73

Grading 3 2 3 1 2 2

L (lymph vascular space
involvement)*

1 1 1 1 1 1

V (blood vascular space
involvement)*

0 0 0 0 0 1

Pattern of invasion Finger-like Finger-like Closed Finger-like Diffuse Closed

Peritumoral inflammatory response Strong Weak Strong Weak Weak Strong

SCC, Squamous cell carcinoma.

*X = Not known; 0 = no; 1 = yes.

†Number of positive nodes ⁄ number of all removed nodes.
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segmentation of the ir images

The applied two-stage segmentation was performed by
the analytical chemist (W.S.) in a blinded fashion, and
utilized a combination of unsupervised and supervised
pattern recognition methods. The first bootstrapped
the second; that is, reference data for parameterization
in the final supervised step were gained from the
preceding unsupervised step. Whereas the latter was
accomplished with our previously described approach
consisting of non-hierarchical fuzzy c-means clustering
(FCM) following a hierarchical cluster analysis (HCA),1

here a supervised classification scheme called soft
independent modelling of class analogies (SIMCA)
was applied. SIMCA was considered for this work
because the FCM ⁄ HCA method alone is no longer
feasible, owing to the quadratic complexity of computer
memory requirements, and would demand the com-
plete set of spectra to be clustered. However, SIMCA
requires training data, which in turn can be provided
by using FCM ⁄ HCA, as long as the underlying data
amount remains restricted. Direct access to training
data is not possible, as histological characterization
would necessitate procedures adversely affecting any
following IR-MSP processing.

In detail, unlike HCA, FCM clustering is feasible for
large spectra numbers. HCA, however, provides clus-
tering results with explicit similarity distance informa-
tion. Therefore, after pre-clustering the data into 35
clusters (far beyond the expected number of tissue
types), in the HCA step the number of FCM clusters was
further restricted to 12, to roughly agree with the
number of present tissue types, as was suggested after
initial histopathological assessment of the microscopic
images. This FCM ⁄ HCA cascade for providing the
training data for SIMCA was applied to a subset of the
ROIs with �0.5 · 106 spectra.

To perform the training for SIMCA, from this subset
of spectra about 4500 model spectra, together with
their corresponding cluster labels 1–12 assigned by
FCM ⁄ HCA, were extracted. The main criterion for
selecting model spectra was to reflect the spectral
diversity observed for each of the 12 FCM ⁄ HCA pre-
clustered regions, whereas the resulting number of
contributing spectra remained between 200 and 1000
per cluster. The basic principle of SIMCA is to accom-
plish a separate principal components analysis (PCA)
for the spectral data contributing to each cluster.
Therefore, cluster-individual PCA models represented
by a linear subspace around a mean vector were
obtained from the training phase. In the application
phase of the SIMCA method, the vectorial distance
between a sample and each PCA model was computed

500 µm
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Figure 1. Microscopic overview of images of two neighbouring

sections of tumour II. A, Unstained section mounted on a CaF2

window with labelling of seven regions of interest (ROIs) (the size of

each region is given in Table S2). B, Adjacent section of A ⁄ C stained

with haematoxylin and eosin (H&E) for primary determination of the

ROIs. Ec, ectocervix; En, endocervix; V, vagina; E, epithelium; SCC,

squamous cell carcinoma; S, stroma; BV, blood vessels filled with

erythrocytes. C, Section A was stained with H&E after infrared data

acquisition; arrows indicate regions with clear differences in relation

to the adjacent section B (section-to-section variations).

4 J Einenkel et al.

� 2012 Blackwell Publishing Ltd, Histopathology



after projecting the sample spectra data into each
respective linear subspace. The model with the closest
distance was considered to best represent the spectrum
of the sample, so that its physical area (i.e. the IR pixel)
could finally be assigned to a certain IR cluster. To

visualize the clustering results, coloured label images
were provided, indicating respective regions with
similar spectral absorption properties (Figure 2C).

image registration and evaluation of

ir tissue recognition

To objectively compare the segmentation results
obtained from the IR chemical with dye-assisted
imaging, an intermediate step was required to co-
register the images of both modalities. An interactive
landmark-based linear (rigid) image registration was
applied, whereby a redundant number of four respec-
tive landmark points was assigned for each image pair.
A least-squares fitting procedure was applied in order to
determine the registration parameters. Solutions for
scaling, rotation and translation to accomplish the
registration can be directly computed. The reference
image geometry was set to that of the histological
images; that is, the nominal pixel size for performance
of one-by-one comparisons was approximately
0.7 · 0.7 lm2. This rigid registration and the adapta-
tion of resolution were applied to all 46 ROI pairs, and
finally the coincidence of the IR-based segmentation
results and the manual labelling of the H&E-stained
sections was determined pixel by pixel (Figure 2D).

tumour segment outline variation experiment

Preliminary investigations have suggested the assump-
tion that transition areas of adjacent tissue types are
problematic and represent the major error source in IR-
MSP tissue recognition.21 The impact of these transi-
tion areas on the accuracy of IR-MSP was estimated by
an algorithmic variation of the outline of dysplasia and
carcinoma segments in the histopathological reference
in relation to an IR cluster combination (cluster
combination synonym ‘atypical tissue no. 2’; see

A

B

C

D

100 µm

Figure 2. Region of interest (ROI) no. 1 of patient ⁄ tumour II (see

Figure 1). A, Microscopic image of the haematoxylin and eosin

(H&E)-stained section (0.66 · 0.66 lm2 ⁄ pixel). B, Complete manual

segmentation of the H&E-stained image A with six tissue classes: red,

tumour; blue, cervical stroma; yellow, inflammatory cells; magenta,

erythrocytes; green, mucus and detritus; black, holes and fissures.

C, Infrared microspectroscopy (IR-MSP) image of a part of the same

tissue section taken before staining and scaled on the same size (lower

resolution of 4.2 · 4.2 lm2 ⁄ pixel spectra); the colours represent 12

IR clusters. D, Alignment of the infrared and H&E images after

registration (scaling, translation, and rotation) based on four

manually assigned orientation points; the image analyses yielded the

following values of sensitivity and specificity: 91.1% and 98.9% for

the areas of squamous cell carcinoma; 80.5% and 58.1% for stroma;

37.0% and 85.2% for inflammatory cells; and 16.0% and 99.9% for

erythrocytes.
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Results). Starting from the original result of the manual
tissue type segmentation, the segment outlines were
varied stepwise (n = 15) in the following way: in order
to determine the alteration of sensitivity, the outline
was shrunk, and to assess the specificity, the outline
was enlarged (Figure 3).

statistical analysis

Data analysis was primarily descriptive. Sensitivity and
specificity statistics were used to evaluate IR-MSP
imaging as a diagnostic test for the recognition of
different tissue types. The terms true and false refer to
the histological reference regarding the presence or
absence of the tissue type of interest. Sensitivity is the
proportion of true-positive spectra pixels of all pixels of
the pertaining tissue type; specificity is the proportion
of true-negative pixels of all pixels of the remaining
tissue types. For easy comparison of these values
between histopathologically defined subgroups, ‘accu-
racy’, defined as a proportion of both true positives and
true negatives in relation to all, was additionally used.
Features measured in continuous scales were summa-
rized in box-and-whisker plots, and categorical features
were presented as counts and proportions. The Wilco-
xon test was used for the analysis of paired values that
were not normally distributed.

Results

matching matrix for microspectroscopic and

histopathological imaging

All 46 ROIs of the validation dataset were composed of
a total number of 2 864 960 spectra pixels. Subse-
quently, the H&E-stained sections were digitalized at a
higher spatial resolution, which resulted in
108 044 942 image pixels for the same overall area
(resulting scaling factor: 6.14).

The basis for differential assessments of the results
obtained is provided by the histology-related matching
matrix (Table 2). The maximum values of coincidence
between the different tissue types and all IR clusters
ranged from 35% to 80%, with the highest coincidence
between ‘blood vessels’ and cluster 6. The worst
maximum values were found for ‘mucus and detritus’
(IR cluster 8) and ‘glandular epithelium’ (IR cluster 6).
Pixels of the former also showed a high level of
coincidence (27%) with the ‘13th cluster’, representing
a rejection class either for spectra arising from tissue-
free areas or spectra with poor signal-to-noise ratios.
Mucus and cell detritus were localized within hollows,
glandular ducts and tissue-free areas, exhibiting

only low diagnostic importance. Glandular epithelium
showed a flat frequency distribution over three IR
clusters (6–8). Some other tissue types were ambigu-
ously represented by several IR clusters, which were
expediently combined for further analysis. In order to
achieve an unambiguous assignment between one
tissue type and several IR cluster combinations, ‘cluster
combination synonyms’ were introduced (Table 3,
column 3).

tissue type-related assessment of accuracy

by binary classif ication testing and its

variation between the different roi s

Considering all patients, values of sensitivity and
specificity ranged from 46% to 91%, and from 79% to
100%, respectively, for recognition of the different
tissue types (Table 3). In spite of possible IR cluster
combining, glandular epithelium was not reasonably
assignable. Although its maximum match occurred
for IR cluster 6 (peak: 35%), this cluster 6 in turn
was also well associated with stroma and blood
vessels and, in fact, it would be better included in a
cluster combination {4, 5, 6} associated with both
stroma and vessels (Table 2). This can clearly be
attributed to the fact that this glandular epithelium
consists of a stroma-adjacent cellular monolayer with
a thickness in the order of the spatial resolution of IR-
MSP (Figure 4). Unfortunately, this finding empha-
sizes that some relevant histological structures with
extents too close to the diffraction limit may possibly
be missed.

If the sensitivity and specificity are calculated not
only for the whole dataset, but separately for each ROI,
the values show a considerable variance, as is demon-
strated in the box-and-whisker plot in Figure 5.

In all cases where the adjacent section had to be used
for segmentation, the test accuracy was not worsened
(e.g. 92.9% versus 92.8% for recognition of atypical
tissue no. 2; Table 4).

error analysis of the classif ication results

The tissue types ‘stroma’ and ‘inflammatory response’
were most frequently classified as ‘false positive’ in the
sensitivity and specificity statistics (Table 3, rightmost
column). This outcome concerning ‘stroma’ was
expected; stroma represents the dominantly occurring
tissue type of the whole dataset (57%; Table S1), has a
key tissue-supporting function, and occurs adjacent to
most other tissues. Furthermore, the ‘inflammatory
response’, i.e. the infiltration of tissue with inflamma-
tory and immunocompetent cells, is not an actual
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Figure 3. Schematic represen-

tation of two possible changes

in sensitivity (A ⁄ B,C ⁄ D) and

specificity (E ⁄ F,G ⁄ H) at a time

as a function of the size of the

region of interest (ROI) and the

distribution of false negatives

and false positives, respectively.

In the case of the preference of

false negatives and positives in

the transition area of different

tissue types, exclusion of this

area yields a distinct increase in

sensitivity and specificity

(C ⁄ D,G ⁄ H). There is no change

in these values if the size of the

ROIs is reduced for a homoge-

neous distribution of both false

negatives and false positives

(A ⁄ B,E ⁄ F).
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tissue type from the classical point of view, but is a
frequent and important histopathological feature. The
dependence of test accuracy on the degree of inflam-
matory response is demonstrated in Figure 6 for the
recognition of ‘atypical tissue no. 2’.

tissue subtype heterogeneity and correlation

with morphological tumour features

The number of clusters was chosen to be slightly higher
than that of the correspondingly defined histological
tissue types, so that ‘chemical tissue entities’ that
appear to be possibly morphologically identical could
potentially be differentiated. Thereby, the potential for
structure-related subdifferentiation was investigated by
visual assessment of those histopathological tissue
types obviously represented by two or more IR clusters,
in order to find preferences in topology. Only in the case
of squamous epithelium were good structural corre-
spondences found, for three detected sublayers repre-
sented by the IR clusters 8, 9, and 10. However, similar
in-depth analyses of stroma, atypical tissue and
erythrocytes did not yield a morphologically identifiable
preference of IR cluster localization within the tissues

when compared with corresponding H&E-stained sec-
tions.

The influence of several histopathological tumour-
related features (typing, grading, pattern of invasion,
etc.) on accuracy was evaluated for atypical tissue
(dysplasia and carcinoma; IR cluster combination
synonym ‘atypical tissue no. 2’; Table 3). The largest
difference in accuracy between the various feature
stages was <8% points (Table 4). Interestingly, for
poorly differentiated tumours (grading G3), as well as
for tumours with a closed invasion front pattern, the
lowest recognition accuracy was measured (about
88%), but a more in-depth analysis of these data was
not indicated, owing to the limited number of cases.

tumour segment outline variation experiment

Exclusion of transition areas was accompanied by
increases in both sensitivity and specificity (Figure 7).
The paired comparison of sensitivity and specificity
values by use of the Wilcoxon test demonstrated a
significant difference between each step n and n + 1
(sensitivity, P £ 0.003; specificity, P £ 0.00002). The
increase in these values substantiates the spatial

Table 2. Matching matrix. The data value at any matrix position is a fraction of pixels (%; sensitivity) of a histologically
classified tissue type (row sum = 100%); each tissue type is represented by a combination of different fractions of the 13
infrared (IR) clusters; assignment of IR clusters to definite tissue types (as shown in Table 3) is based on the distribution of these
values (the number of pixels of each tissue type is given in Table S1)

True tissue type

IR cluster

1 2 3 4 5 6 7 8 9 10 11 12 13

Stroma 1.20 0.94 0.58 21.85 38.02 22.06 12.40 0.38 0.03 0.01 0.05 0.33 2.15

Epithelium 1.07 2.43 7.57 0.02 0.06 1.21 1.43 51.90 27.85 3.08 0.00 0.00 3.38

Inflammatory response 2.24 3.04 1.43 2.93 10.52 12.34 66.17 0.42 0.05 0.01 0.00 0.04 0.82

Glandular epithelium 3.77 1.12 2.37 1.03 2.36 35.26 23.91 21.42 1.30 0.00 0.00 0.00 7.46

Blood vessels 0.00 0.00 0.00 5.40 7.66 79.96 4.23 0.95 0.00 0.00 0.32 0.05 1.43

Erythrocytes 0.02 0.05 0.01 2.14 0.84 12.35 6.48 4.92 0.00 0.00 11.89 50.48 10.82

Mucus, detritus 4.82 1.37 0.74 1.12 1.35 19.19 8.67 34.86 0.46 0.00 0.18 0.47 26.77

Dysplasia 7.28 74.44 5.93 0.17 0.01 1.00 6.77 1.19 0.65 0.00 0.00 0.00 2.56

Dysplasia ⁄ carcinoma* 57.93 32.00 0.76 0.01 0.00 0.80 6.79 0.71 0.32 0.00 0.00 0.02 0.66

Carcinoma 45.72 22.49 4.08 0.34 0.14 6.40 17.33 0.98 0.33 0.00 0.00 0.00 2.19

Shrinkage artefacts 1.73 1.16 0.15 18.18 9.17 8.90 8.03 6.22 0.25 0.00 0.45 2.80 42.97

*Not possible to differentiate by the pathologist.

Bold type indicates the maximum value in each row.
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preference of false negatives and false positives in the
transition area (Figure 3C,D,G,H).

Discussion

Both H&E staining-based classical histopathology and
IR-MSP-based biochemical histopathology are sophis-
ticated pattern recognition methods; however, they
operate on different levels. Whereas IR-MSP assesses
patterns in the high-dimensional pixel spectra, con-
ventional histopathology is based on comparatively
low-dimensional colour perception, and considers
locally extended structural patterns obtained at a
higher level of detail. A comparative analysis of both
methods assumes that, for IR-MSP, slight cell differ-
ences concerning concentration and conformations of
functional groups associated with proteins, lipids,
nucleic acids and carbohydrates are distinctive enough
for recognition of specific tissue types.

assessment of the methodical approach

To meet the requirements of conventional histopathol-
ogy, practically relevant investigation conditions, such
as the use of formalin-fixed paraffin-embedded tissue
samples, large ROIs with transition areas on tissue
boundaries, simultaneous recognition of all tissue types
(possibly with strongly varying portions), and a high
level of detail, are needed in the study design. Our
approach comes close to these requirements, as follows.

The fixation and the impregnation of the specimens
with the embedding paraffin followed by deparaffiniza-
tion is accompanied by obvious, and so far not
completely evaluated, changes in the molecular tissue
characteristics, and by the possibility that residual
paraffin could impair the spectroscopic data.31 How-
ever, the advantages of the approach outweigh the
problems with the fresh frozen section technique, so
that it has been used by most of the published studies.

Table 3. Characteristics of infrared (IR) spectroscopy as diagnostic test for recognition of histological tissue types with regard to
all patients; cluster combination synonyms in bold type are further illustrated in Figure 5

True tissue
type

IR cluster
no.

Cluster
combination
synonym

Sensitivity
(%)

Specificity
(%)

Both tissue types with the most
frequent false-positive assignment

Stroma 4, 5, 6 Stroma 81.9 80.6 Shrinkage artefacts, inflammatory
response

Blood vessels 6 Blood vessels 80.0 84.0 Stroma, inflammatory response

Stroma and
blood
vessels

4, 5, 6 Stroma and blood
vessels

82.2 83.4 Shrinkage artefacts, inflammatory
response

Epithelium 8, 9, 10 Epithelium 82.8 98.4 Shrinkage artefacts, Mucus, detritus

Inflammatory
response

7 Inflammation 66.2 88.2 Stroma, carcinoma

Erythrocytes 11, 12 Erythrocytes 62.4 99.5 Shrinkage artefacts, Stroma

Dysplasia 2 Dysplasia 74.4 95.2 Carcinoma, dysplasia ⁄ carcinoma

Carcinoma 1 Carcinoma 45.7 97.2 Dysplasia ⁄ carcinoma, Stroma

Dysplasia and
carcinoma

1, 2 Atypical tissue no. 1 71.9 97.4 Stroma, inflammatory response

Dysplasia and
carcinoma

1, 2, 3 Atypical tissue no. 2 75.8 96.4 Stroma, inflammatory response

Dysplasia and
carcinoma

1, 2, 3, 7 Atypical tissue no. 3 91.0 79.4 Stroma, Inflammatory response

Mucus, detritus,
and shrinkage
artefacts

‘13’ Detritus 41.7 97.8 Stroma, carcinoma

Infrared microspectroscopic histopathology 9
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Notably, direct analysis of paraffin-embedded
specimens without prior chemical dewaxing is also
possible.18,22

The average size of the 46 ROIs analysed in our
study was 1.084 mm2, which considerably exceeds the
areas of ROIs of previous studies, particularly if they
used tissue microarrays to prepare the slides. The
standard diameter of punches is 0.6 mm, resulting in
an area of 0.283 mm2.3 Evidently, restricting the
analyses to very small selected areas is not appropriate
for evaluation of IR-MSP as a technique for general
histopathology.

Spatial resolution is a critical measurement param-
eter in IR-MSP, and strongly affects the character of the
IR spectral data. The high lateral spatial resolution
obtained in our IR imaging setup corresponds with
previously published analyses indicating a resolution of
approximately 4–10 lm. A real improvement in reso-
lution cannot be achieved with currently available IR-
MSP equipment, because these values are near the
diffraction limit (first realized by Abbé) in the mid-IR
region. Possibly, future developments, such as new
near field imaging techniques, might overcome this
problem.

An important step in our processing chain is the
pairwise rigid image co-registration employed for all

A

B

C

100 µm

Figure 4. Infrared (IR) microspectroscopy (IR-MSP)-based segmen-

tation of glandular epithelium. A, Haematoxylin and eosin-stained

microphotograph of a region of interest (ROI) of tumour VI. B,

Glandular epithelium is manually segmented and labelled orange; the

result of image registration is denoted by a rectangle. C, Corre-

sponding IR-MSP image; IR cluster 6 is also shown in orange; despite

the uninterrupted epithelial layer in A, cluster 6 looks like a

discontinuous streak; values of sensitivity, specificity and accuracy

are 43.1%, 84.6% and 79.2%, respectively, for this isolated ROI.
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Figure 5. Variation in sensitivity and specificity for selected infrared

cluster combination synonyms (see Table 3) computed for each

region of interest containing the considered tissue type. A, ‘Stroma

and blood vessels’ (n = 46). B, ‘Epithelium’ (n = 8). C, ‘Inflammation’

(n = 34). D, ‘Erythrocytes’ (n = 26). E, ‘Atypical tissue no. 2’

(n = 22). * Outliers
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ROIs to find an optimum of the pixel coincidence of
both modalities. The compensation for deformations
caused by the staining procedure and by differences
in the adjacent section (in one-quarter of cases) was
referred to the total area of an ROI. Treating partial
deformations would have required non-rigid co-regis-
tration, a complex procedure necessitating an large
and unavailable number of corresponding landmark
points. Otherwise, a simple visual comparison of both
IR chemical and dye-assisted imaging is not accept-

able for studies characterized by precise statistical
analysis.

assessment of the results obtained

The obtained values of sensitivity and specificity
associated with the limited recognition/identification
of small structures (e.g. glandular epithelium) and the
considerable variance between ROIs of different local-
ization were both surprising and disappointing, and

Table 4. Recognition of atypical tissue (see Table 3; ‘atypical tissue no. 2’: dysplasia and carcinoma) stratified according to
different histopathological features and the relationship of haematoxylin and eosin (H&E) and infrared (IR) specimen sections
based on IR clusters 1, 2, and 3

Stratification feature
Patient ⁄ tumour
(ROI no.)

Total size of
H&E images
(pixels)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Typing
SCC II, III, IV, V, VI 93 324 099 76.2 96.3 92.5

Adenocarcinoma I 14 720 843 69.5 97.0 95.0

pN
pN0 I, IV, V, VI 66 936 310 85.1 95.4 93.5

pN1 II, III 41 108 632 56.9 97.8 91.7

Grading
G1 IV 18 592 725 92.2 89.9 90.7

G2 II, V, VI 61 481 126 81.3 97.6 95.4

G3 I, III 27 971 091 35.2 96.9 88.6

Blood vascular space involvement
V0 I, II, III, IV, V 95 914 517 75.3 96.3 92.6

V1 VI 12 130 425 80.8 96.8 94.4

Pattern of invasion
Closed III, VI 25 380 673 45.3 96.7 87.7

Finger-like I, II, IV 61 171 952 87.6 95.9 94.4

Diffuse V 21 492 317 78.0 97.2 94.5

Peritumoral and intratumoral inflammatory response
Weak II, IV, V 67 943 426 86.8 96.1 94.3

Strong I, III, VI 40 101 516 50.0 96.8 90.4

Relationship between H&E and IR specimen sections
Same section I (1, 6), II, III, IV (1, 7), V, VI

(1–6, 8–10) (n = 35)
81 400 290 71.0 96.9 92.9

Adjacent sections I (2–5), IV (2–6), VI (7, 11)
(n = 11)

26 644 652 86.4 94.6 92.8

SCC, Squamous cell carcinoma.

Infrared microspectroscopic histopathology 11

� 2012 Blackwell Publishing Ltd, Histopathology



A B C

D E F

G H I

100 µm

100 µm100 µm

12 J Einenkel et al.

� 2012 Blackwell Publishing Ltd, Histopathology



may represent objections to the use of IR-MSP as an
objective, unsupervised and unbiased clinical applica-
tion in histopathology. In our opinion, IR-MSP remains
a complementary tool, to be used in combination with
conventional histopathology and immunohistochemis-
try. In particular, the high number of spectra pixels, the
large ROIs including very complex tissue areas and the
newly introduced image co-registration substantiate
our final assessment of the method, in contrast to many

studies cited in the Introduction, which received very
favourable appraisals. Really promising publications in
recent years indicating very high resolution and
important clinical relevance, such as the detection of
micrometastases in lymph node histopathology or the
analysis of already stained cell preparations (cytospin
and smear), are very impressive, but their methodical
approach is characterized by a low number of mostly
selected samples.11,15,32

Regarding our study, there is only a very small
chance that a further increase in the number of
patients or an enlargement of the size of ROIs could
considerably improve the accuracy. The main source of
trouble found in our analysis is the infiltration of tissue
with inflammatory and immunocompetent cells asso-
ciated with changes in the extracellular matrix result-
ing from protein accumulation. This kind of cellular
and non-cellular disturbance of the tissue homogeneity
directly causes spectral mixing, and thus makes IR-
MSP analysis unreliable in those regions. A similar
result was found by the analysis of confounding
variables in the microspectroscopic assessment of Pap
smears, where leukocytes and, in particular, lympho-
cytes misleadingly had spectral features suggestive of
changes indicative of malignancy.33

In addition to local tissue inflammation, the
accuracy of IR-MSP might be affected by further
important aspects that are frequently encountered in
solid tumours. For example, the metabolic status of a
tumour is heterogeneous with regard to different areas,
depending on the availability of oxygen and nutrients,
and chemical tumour tissue composition might there-
fore be influenced by further unpredictable components
within the cells and the extracellular matrix.17 Fur-
thermore, tumours derived from one and the same
tissue type may show considerable morphological
heterogeneity, and may appear with several histolog-
ical subtypes (cellular origin and differentiation) and
grades (nuclear differentiation). Our proof-of-concept
study demonstrates a minor influence of several histo-
pathological tumour-related features on the accuracy
of recognition of dysplastic and carcinomatous tissue.
The influence of those features seems to be insignificant

Figure 6. Different levels of accuracy for histopathological recognition of tumour areas of squamous cell carcinomas derived from tumour III

[region of interest (ROI) 4; left column) and tumour VI (ROIs 6 and 9; middle and right column; see Table S2). A–C, Microphotographs of

haematoxylin and eosin (H&E)-stained 10-lm tissue sections of the cervix uteri with rectangle labels of the ROIs. D–F, Images of complete

manual segmentation by the pathologist with six classes: red, squamous cell carcinoma; blue, cervical stroma; light blue, vessel wall;

yellow, inflammatory response; magenta, erythrocytes; black, holes and fissures. G–I, Infrared microspectroscopy images of the ROIs at the same

scale as the H&E images. For recognition of tumour areas (atypical tissue no. 2, see Table 3), difference image analysis yielded a sensitivity of

16.4% and a specificity of 95.1% for tumour number III, characterized by dissociative growth and strong peritumoral tissue infiltration of

inflammatory cells (G). The sensitivity and specificity of ROIs 6 and 9 of tumour VI were 38.8% and 99.5%, and 86.5% and 69.5%, respectively.

The clear difference in test accuracy for the same specimen is caused by different proportions of tumour and peritumoral and intratumoral

inflammatory responses.
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Figure 7. Variations in the sensitivity (A) and specificity (B) statistic

for the infrared cluster combination synonym ‘atypical tissue no. 2’

induced by a layer-by-layer pixel reduction (A) respectively apposi-

tion (B) (15 steps) of the tissue areas dysplasia and carcinoma

(theoretical background is given in Figure 3). The analysis is based

on 22 regions of interest (ROIs) of all tumours (dots and asterisks are

outliers and extremes).
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if compared with the high variance resulting from the
localization of separately calculated ROIs (Figure 5).
Only a few analyses concerning such detailed morpho-
logical assessment have been published so far. An
interesting study, however, characterized by a small
number of spectra, examined samples of benign endo-
metrial tissue and several subtypes of endometrial
carcinoma ⁄ sarcoma (endometrioid, serous papillary
and malignant mixed Müllerian tumours).13 The sep-
aration between spectra derived from different subtypes
was good, and, additionally, depending on the presence
of antecedent tamoxifen usage, separation was dra-
matically improved. Unfortunately, precise values of
the sensitivity and specificity statistics were not given.

The subdifferentiation of tissue types revealed a
distribution of three IR clusters in accordance with
the layer-related cell differentiation of squamous epi-
thelium; these have already been demonstrated in
previous studies, and were mainly related to glycogen
and nucleic acid bands.1,26,28 Our previous analysis has
shown that a still more detailed hierarchical classifica-
tion of the IR data allows further segmentation of all
morphologically deducible cell layers.1 Furthermore, a
recently published study that analysed uterine cervical
samples of exfoliated cells by IR-MSP (referred to as
‘spectral cytopathology’) actually detected cellular
abnormalities in spectral characteristics of morpholog-
ically normal-appearing cells.34 The observed discrete
biochemical changes were interpreted as being probably
caused by infection with human papillomavirus. The
same trends were observed in another study of oral
mucosa cells, in which morphologically normal epithe-
lial cheek cells infected with herpes simplex virus were
characterized by cell changes that were only spectro-
scopically detectable.35 Unfortunately, the quoted stud-
ies are limited in their impact, because of the very low
number of samples and the restrictive inclusion criteria.

With regard to oncological issues, recent studies have
demonstrated marked heterogeneity of tumour tissue,
as well as the secreted mucus, that is undetectable by
conventional histological staining.18,22 Our analysis
confirms the possibility of using IR-MSP to characterize
spectral subtypes of tumour tissue (IR clusters 1–3), but
the interpretation of this finding is very complex. All of
these studies make it obvious that IR-MSP has the
potential to track biochemical variations in cells and
tissues that are not associated with visible morpholog-
ical changes, and, therefore, the intended subdifferen-
tiation of tissue types should be based not only on
morphologically detectable local preferences, but also on
further molecular biological methods. In our opinion,
the main issue in IR-MSP research is currently to find
stable links between spectroscopic features and clearly

defined structural and functional cellular changes, to
enable IR-MSP to be used in future clinical applications.

For the first time, the tumour segment outline
variation experiment demonstrates a non-homogeneous
distribution of false negatives and false positives within
the ROIs. The false assignment of IR data referring to the
histopathological reference is mainly located in transi-
tion areas on tissue boundaries. A mixing of biochemical
information of cell components and of different tissue
types in these areas remains a severe problem. This
result is in good accordance with previously published
analyses,3,8 leaving out those transition areas and
focusing only on inner segment regions exhibiting
well-defined tissue types, and thereby obtaining clearly
higher accuracy values. Our variation experiment well
illustrates the effect of such a methodical difference,
which was already considered as selection bias.21

In conclusion, the IR-MSP-ascertainable differences in
formalin-fixed paraffin-embedded tissue are too subtle
and not specific enough for histopathological tissue
discrimination for the purpose of an automated diagnosis
in the strict sense. Therefore, the values of recognition
accuracy found are, at present, the major limitation of
the current approach. The application of this imaging
technique for medical diagnostics in order to understand
molecular differences associated with cell types and cell
alterations is only possible in combination with concom-
itant conventional histopathology using transmission
light microscopy. However, we expect a greater potential
for more specific issues, such as the discrimination of
fewer tissue types, the analysis of few substances in bio-
analytical tools and biomolecular functional assays, or
studies regarding sequential variances over time.
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