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Abstract 
miRNAs play critical roles in the regulation of gene expression with two major functions: degrading 
mRNA in a sequence specific manner or repressing its translation. Publicly available data sets on 
miRNA and mRNA expression in embryonal and induced stem cells, human tissues and solid tumors 
are analyzed in this case study using self organizing maps (SOM) to characterize miRNA expression 
landscapes in the context of cell fate commitment, tissue specific differentiation and its dysfunction in 
cancer. The SOM portraits of the individual samples clearly reveal groups of miRNA specifically 
overexpressed without the need of additional pairwise comparisons between the different systems. 
Sets of miRNA differentially over and underexpressed in different systems are provided. The 
individual portraying of the expression landscapes enables a very intuitive, image-based perception 
which clearly promotes the discovery of qualitative relationships between the systems studied. We see 
perspectives for broad applications of this method in standard analysis to many kinds of high 
throughput data of single miRNA and especially combined miRNA/mRNA data sets. 
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1. Introduction 
miRNAs play critical roles in the regulation of gene expression. Just as the set of transcription factors 
(TFs) in a given cell type constitutes a ‘code’ that specifies cellular differentiation via mRNA activity, 
so ‘miRNA codes’ are likely to have conceptually similar roles in the regulation of gene activity (1). 
Both TFs and miRNA are trans-acting factors that exert their activity through composite cis-regulatory 
elements. The resulting miRNA/mRNA coexpression might come true either in concert, in anti-
concert or also in a more complex fashion. Here, the two major functions of miRNAs are degrading 
the mRNA or repressing its translation. The situation is usually complex because a particular miRNA 
will have multiple mRNA targets and because multiple miRNAs could target the same mRNA. 
The most widely studied mechanism of regulation involves binding of a miRNA to the target mRNA. 
miRNAs regulate their targets by triggering mRNA degradation or translational repression. As a 
result, translation of the target mRNA is inhibited and the mRNA may be destabilized. The inhibitory 
effects of miRNAs have been linked to diverse cellular processes including malignant proliferation, 
apoptosis, development, differentiation, and metabolic processes. The negative relationship between 
miRNAs and their targets suggests that the regulatory effect of a miRNA could be determined from 
the expression levels of its targets. Note also that miRNA do not need a perfect alignment with their 
targets to act. In consequence one miRNA may regulate several mRNAs or one mRNA may be 
regulated by several miRNA. This way miRNAs potentially regulate approximately 30% of all genes 
encoding human proteins and appear to interfer in a wide range of cell functions, such as cell 
generation, differentiation, and proliferation. 
The opposite effect, namely direct correlations between miRNA and mRNA expression can be caused 
by the fact that intronic miRNAs are usually coordinately expressed with their host gene mRNA, 
implying that they derive from a common transcript, and that analysis of host gene expression can be 
used to probe the spatial and temporal localization of intronic miRNA (2). In addition, also proximal 
pairs of miRNA are often coexpressed. It was found that an abrupt transition in the correlation 
between pairs of expressed miRNA occurs at a distance of 50 kb, implying that miRNA separated by 
less than 50 kb typically derive from a common transcript. 
Exact understanding of how miRNA regulate gene expression is vital to the field of miRNA research. 
Systematic analysis of miRNA expression landscapes and also of miRNA/mRNA coexpression 
patterns thus constitute a basal objective in miRNA research which complements miRNA gene and 
target discovery. In this contribution we analyzed miRNA expression using self-organizing maps, a 
machine learning clustering technique based on neural network. The method was described in detail in 
the accompanying chapter (3). In this chapter we apply the SOM portraying method to discover 
combined miRNA and mRNA expression landscapes in the context of cell fate decisions and 
stemness, fully differentiated human tissues and diseased cancer samples of different origin in order to 
illustrate the performance of the method in form of an extended case study. To our best knowledge this 
method was applied here for the first time to analyze miRNA expression data.  
 

2. Analyzing miRNA/mRNA coexpression – a short overview 
In general, miRNA/mRNA coexpression can be studied in two different ways: Firstly, correlation 
between the expression values of miRNA and mRNA species are directly analyzed. For example, in 
such studies on human brain biopsies the authors report that the distribution of correlation coefficients 
for all possible mRNA-miRNA pairs exceeds a random distribution at their tails at high positive and 
negative values of the correlation coefficient (4). Part of the negative correlations selected tends to 
predict targets and positive correlations tend to predict physically proximate pairs as expected (see (3) 
and references cited therein). In contrast, other studies report that miRNA activity shows very weak 
correlation with mRNA expression which indicates more complex regulation mechanisms between 
miRNAs and their target genes (5). 
The second type of coexpression studies pursues a more indirect approach based on databases which 
collect miRNA-mRNA target relationships (see overview in (6)). These data are obtained either via in-
silico target prediction of miRNA binding motifs (see data bases: PITA (7), PICTAR (8) and 
TargetScan (9)), via meta analyses of experimentally validated miRNA target genes (TarBase (10)), 
miRecords (11) and miR2Disease (11)) or via text mining of biomedical abstracts (miRSel (12)). The 
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collected data constitute sets of mRNA target species for individual miRNA (or families of miRNA) 
which are subsequently used in gene expression enrichment analyses. This approach searches for 
significant expression changes of the target sets compared with appropriate random sets (13). Enriched 
sets suggest that their expression is potentially regulated by the associated miRNA. 
The computational methods predict about 40 mRNA targets per miRNA on the average while only 2 – 
8 targets are associated with each miRNA in the experimentally validated and text mining data bases. 
The latter approaches usually consider less miRNA in total (from 93 in miRecords to 176 in 
miR2Disease) than the former ones (from 163 in PICTAR to 640 in PITA). In silico miRNA target 
prediction is usually not very accurate with fairly high false positive and/or false negative rates.  
 

3. Methods and data  

3.1. Expression analysis using self organizing maps 
SOM is a neural network algorithm widely used to categorize large, high-dimensional data sets (14). 
In bioinformatics, SOM has been successfully applied to gene expression analysis (15) enabling 
characterization of genome wide expression landscapes in a sample specific way (16-17). Our 
implementation of the method, called SOM-cartography or SOM-portraying, transforms large and 
heterogeneous sets of expression data into an atlas of sample-specific portraits which can be directly 
compared in terms of similarities and dissimilarities (see (3) for a detailed description of the method). 
This global view on the behavior of defined modules of correlated and differentially expressed genes 
is more intuitive than ranked lists of hundreds or thousands of individual genes usually obtained in 
standard expression analysis. Particularly, SOM analysis is featured by several important benefits: (i) 
it provides an individual visual identity for each sample; (ii) it reduces the dimension of the original 
data; (iii) it preserves the information richness of the molecular portraits allowing the detailed, 
multivariate explorative comparisons between samples, and (iv) its output can be treated as a new, 
complex object for next level analysis in terms of visual recognition. Here we will apply the method to 
different data sets to portray the miRNA expression landscapes, to characterize the similarities 
between the different samples studied and to extract lists of miRNA relevant in the context of stem 
cells, differentiated tissues and cancer. miRNA data are complemented with associated mRNA 
expression landscapes. 

3.2. Data sets 
We analyzed following three data sets: 
The WILSON-data set refers to expression data of 697 miRNA from embryonic stem cells (ESC), 
fibroblasts and derived induced pluripotent stem cells (IPS) obtained in a microarray study (18). 
The LIANG-tissue set contains expression values of 175 miRNA measured in 24 human tissues by 
standard TaqMan qPCR assay (19). Expression values are given in units of the threshold cycle (CT) 
defined as the fractional cycle number at which the fluorescence exceeds a fixed threshold. Four 
human miRNAs (miR-30e, miR-92, miR-92N, and miR-423) that were least variable among the 
tissues in this study were used to normalize the miRNA expression. SOM training was performed 
using log CT values after quantile normalization. The obtained miRNA expression landscapes in 
human tissues were compared with mRNA expression data analyzed previously (17). 
The LU-cancer set contains miRNA and mRNA measurements from the same samples of seven 
healthy and tumor tissues (colon, kidney, bladder, prostate, uterus, lung, breast) (20). miRNA were 
measured using a bead-based profiling method: Oligonucleotide-capture probes complementary to 
miRNAs of interest were coupled to carboxylated 5-micron polystyrene beads impregnated with 
variable mixtures of two fluorescent dyes for ‘barcoding’, each representing a single miRNA. The 
abundance of 217 miRNAs was measured after hybridization, amplification by PCR and staining. 
mRNA expression was determined using microarrays.  
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4. Case studies 

4.1. Stem cells 
miRNAs are important regulators for embryonic stem cell (ESC) self-renewal, pluripotency and 
differentiation (21). The SOM portraits of human fibroblasts, pluripotent stem cells induced from them 
(IPS) and ESC show a simple and consistent spot pattern (Figure 4.1a and e): Overexpressed genes in 
fibroblasts and underexpressed in both types of stem cells (ESC and IPS) aggregate into one spot A. 
Genes with antagonistic activity cluster into spot B showing high expression in ESC and IPS and low 
expression in somatic cells. IPSs reveal another moderately overexpressed spot C in addition to this 
‘stemness’ spot which differentiates between both types of stem cells. It becomes underexpressed in 
ESC and fibroblasts.  
The sample similarity tree (Figure 4.1b) reveals close similarity but not identity between the miRNA 
expression landscapes of ESC and IPS which, in turn, clearly differs from that of the somatic 
fibroblasts. The cell-type specific spots A – C contain about one to two dozen miRNAs per spot. More 
than 400 miRNAs remain not regulated and cluster within the invariant central area of the map (see 
population map, Figure 4.1c).  
Analysis of the spots shows that miRNA of the mir-302 and -17 families are upregulated in ESC and 
IPS (spot B) and miRNAs of the let-7 family are upregulated in fibroblasts (spot A) in agreement with 
the results of ref. (18) (see Table 4.1). It has been argued that increased reprogramming in response to 
let-7 inhibition is mediated by let-7 target genes, such as c-Myc and Lin28 (21). Lin28 is also 
repressed by miR-125, which is abundantly expressed in differentiated cells and changes in concert 
with let-7 in our data set. Presumably inhibiting the activity of both miR-125 and let-7 miRNA may 
result in additional beneficial effects during reprogramming, due to robust activation of Lin28 
expression. Another miRNA from spot A, mir-145, induces ESC differentiation by inhibiting the 
expression of key pluripotency/reprogramming factors, such as Sox2, Oct4, Klf4, and c-Myc. Other 
miRNAs from spot A (mir-24, mir-23 and mir-21) either inhibit cell proliferation by targeting 
important cell cycle regulators, such as c-Myc, and E2F2 (mir-24) or suppress TGF-β/Activin 
signaling. miRNAs from the mir-302 family are found in spot B showing antagonistic activation 
compared with spot A. It has been demonstrated that Sox2 and Oct4 bind the miR-302 promoter and 
are essential for expression of miR-302 in human ESC.  
Hence, our SOM analysis identifies signature groups of miRNA in ESC, IPS and differentiated 
fibroblasts. The SOM portraits clearly assign the expression landscapes to one of the tree cell types 
studied. A similar pattern was observed for mRNA expression (22). 
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Figure 4.1: miRNA expression portraying of stem cells (WILSON-data set): 2nd level SOM arrange the 1st level 
SOM portraits (see the small images) of stem cells (ESC and IPS) and of differentiated cells 
(fibroblasts) according to their mutual similarities (panel a). The two mosaics per cell system refer to 
biological replicates (18). The similarity tree (panel b) expresses the Euclidean distances between the 
different samples in-scale. The population map (panel c) illustrates the number of miRNA per tile in the 
1st level SOM mosaic. The over- and underexpression summary maps (panel d) assign the spots 
detected. 

 
Table 4.1: miRNA regulated in stem cells 
 
spota UPb DNb miRNA within the spot clusterc 

A fibro ESC, iPS let-7d; -let-7f; -let-7e; -let-7a; -145; -100; -let-7i; -29a; -let-7c; -199a-3p; -
125b; -143; -222; -23b; -23a; -24; -34c-3p; -21; -26a 

B ESC, (iPS) Fibro mir-106a; -302a*; -17; -302a; -302d; -302b; -638; -93; -106b; -20a; -302c*; -
19b; -25; -663; -19a; -103; -130a; -107; -20b; -16; -182; -183 

C iPS fibro, (ESC) mir-149*; -18b; -92b; -92a; -30c; -15b; -18a; -151-5p; -30b; -923; -302c; -
148a; -363; -200c; -361-5p; -335; -454; -1 

d fibro ESC mir-27a; -27b; -125a-5p 
 Invariant  mir-768-5p; -15b*; -150*; -219-2-3p; -517c; -504; -612; -629*; -30a*; -652; -

519d; -342-5p; -330-3p; -624*; -193b*; -296-3p; -93*; -187*; -196a 
 
a see Figure 4.1e for spot assignment 
b systems showing up- or downregulation of expression compared with the mean expression of each 

miRNA  
c mirRNA are sorted with decreasing concordance 
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4.2. Human tissues 
The expression of 345 human miRNA was studied in a spectrum of 40 normal human tissues that 
included specimens derived from brain, muscle, circulatory, respiratory, lymphoid, gastrointestinal, 
urinary, reproductive, and endocrine systems. Their SOM portraits in Figure 4.2 reveal a much more 
diverse spot texture compared with the simple pattern observed in stem and somatic cells discussed in 
the previous subsection. The different tissues are grouped into eleven tissue categories in analogy with 
the classification of human tissues in a previous study on mRNA expression (17). Portraits of the same 
category mostly look very similar, hence reflecting similar miRNA expression landscapes. For 
example, tissues derived from different parts of heart (atrium versus ventricle) resemble that of 
skeletal muscle. Portraits of tissues from the gastrointestinal system (‘digestion’: stomach, small 
intestine, and colon), immune system (spleen and lymph node), female sexual organs (ovary, uterus, 
and cervix), and respiratory/epithelial tissues (lung and trachea) show mostly consistent spot patterns 
in each category. 
Similarity-tree analysis identifies five larger clusters of tissues containing muscle, gastrointestinal, 
epithelial, brain and sexual organs which group along different branches of the tree (see Figure 4.3, the 
‘plusses’ indicate that these clusters usually include also tissues of other categories such as adipose 
tissue which are found in the’ muscle+’ branch of the tree). The similarities between the samples can 
be attributed to characteristic groups of spots collected in the respective summary map (see Figure 
4.4,a). Spot analysis characterizes the miRNA expression landscape more in detail. The spot 
expression heatmap (Figure 4.4b) shows the mean expression of each of the spots in all tissues: For 
example, high expression levels of spots B and C are observed in colon samples and high expression 
of spots A, E and F in muscle samples. Over- and underexpression spot abundance analysis provides 
further details (Figure 4.4c): E.g., spot B collects miRNAs which are highly expressed in colon and 
immune system tissues whereas spot C is populated more with miRNAs which are highly expressed in 
many tissues, however with slight preference for colon and epithelium. In turn, miRNAs from both 
spots B and C are underexpressed in adipose, muscle and nervous tissues.  
One also sees that, e.g., miRNAs highly expressed in adipose tissue accumulates within spot A only, 
whereas endocrine tissues show a broad distribution of highly expressed miRNAs over different spots. 
The ‘adipose’ spot A is also observed in a series of other tissues such as pericardium (muscle), bladder 
(epithelium), ovary, uterus and cervix (all sexual organs) reflecting accumulation of fat in different 
regions of the body. Contrarily, miRNA in spot A are strongly down regulated in fat-poor tissues such 
as blood, brain, thymus and, to a less degree, kidney. 
 

 
 
Figure 4.2: miRNA expression portraits of human tissues (LIANG-data set). Tissues are grouped into 11 

categories. 
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Figure 4.3: miRNA expression in human tissues (LIANG-data set). The neighbor joining tree illustrates 
similarities between the SOM expression portraits. One finds essentially five clusters which accumulate 
along different branches as indicated by the dotted ellipses. 
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Figure 4.4: Spot characteristics of miRNA expression in human tissues (LIANG-data set): The overexpression 
spot summary map shows that each cluster is characterized by specific spot patterns (panel a). The spot 
expression heatmap (panel b) shows the mean expression of the spots detected in all tissues (red-to-
white indicates high-to-low). Over- and underexpression spot abundance in ten tissue categories (panel 
c, the colors of the bars are assigned in the legend on top of the heatmap). For example, spot A is 
especially overexpressed in adipose tissue (orange bar) which, in turn, is characterized by 
underexpression of spots B, C and I. 

 
The population and variance maps in Figure 4.5 reveal that the expression of 34 miRNAs remains 
almost invariant in the tissues studied. Most of the miRNA (54 species) are found in spots I and H 
upregulated in sexual organs, endocrine and epithelial tissues. The variance of miRNA expression is 
maximal in placenta due to extraordinarily high expression of genes from spot H (Figure 4.5c). The 
miRNA species found in each of the spots are listed in Table 4.2. 
According to the particular spot abundance one can identify miRNAs expressed in specific tissues 
with minimal or no expression in other tissues such as miR-9/219 in brain (spot G) whereas miR-
124a/124b (spot E) are also strongly expressed in muscle. miRNAs of the let-7 family are also found 
in this partly ubiquitous spot which also contains miR-1 and miR-133a/b showing high expression in 
different parts of the heart and skeletal muscle as well as in vena cava, and thyroid. These are hollow 
organs composed of smooth muscle-containing wall, such as the gastrointestinal system, suggesting 
that expression of miR-1 and miR-133a/b might mark some features shared by different muscle types. 
Note also that selected miRNA of the mir-302 family highly expressed in ESC are among the invariant 
species in the tissue series. Our spot analysis thus provides an opportunity to extract tissue-specific 
expression patterns of groups of miRNA which can be further analyzed with respect to the genomic 
location of their coding sequences and to their involvement into common pathway activities.  
Figure 4.6 shows the clustering pattern of mRNA expression in different tissues as seen by our 
previous SOM analysis (17). On one hand, part of the tissue categories such as muscle or nervous 
tissues form also separate branches due to category-specific mRNA expression. On the other hand, 
similarities between tissues and also tissue categories are different compared with the miRNA 
expression patterns (compare with Figure 4.3). For example, miRNA expression of brain shares partly 
similarity with miRNA expression in muscle (spot E) whereas mRNA expression in nervous tissue is 
highly specific and different from mRNA expression in muscle. Note however that the tissue data sets 
used for mRNA and miRNA analysis are partly different with respect to the tissues included which 
may distort direct comparison. Figure 4.7 matches the tissues used in both data sets. One sees, for 
example, that nervous tissues are highly underrepresented in the LIANG-miRNA data set. On the 
other hand, other tissue categories such as muscle, digestion and immune systems tissues are well 
represented in both data sets.  
Figure 4.7 also compares the tissue-specifics of the miRNA and mRNA expression landscapes in 
terms of their metagene entropies. It reveals interesting differences: miRNA expression is more 
specific for epithelial and immune systems tissues (low entropy) than the respective mRNA expression 
patterns. For endocrine and reproductive organs this relation reverses. 
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Figure 4.5: Population and variance map of expression portraits of human tissues (panel a and b, respectively) 

and their tissue-specific metagene variance (panel c). miRNAs with highly variant expression profiles 
accumulate in the spots located along the border of the map (the number of miRNAs per spot are given 
in the population map). 34 miRNAs with almost invariant profiles form the central blue spot in the 
variance map. Selected spot profiles are shown nearby the respective spots. The metagene variance of 
placenta is maximal due to one strong overexpression spot H (see Figure 4.4 and Figure 4.5). 
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Figure 4.6: mRNA expression in human tissues. The neighbor joining tree illustrates similarities between the 

SOM metagene expression of 67 different tissues grouped into 8 categories. They preferentially 
accumulate along specific branches as indicated by the ellipses. The respective mean portraits are 
shown in the figure (for the full gallery of all single tissue portraits see ref. (17)). Compare with the 
miRNA-expression tree of human tissues in Figure 4.4. 

 
 

 
 

Figure 4.7: Metagene entropies of the miRNA (top) and mRNA (bottom) expression portraits of human tissues. 
Identical tissues in both parts of the figure are connected by the ‘dumbbell’-lines. 

 
Table 4.2: miRNA regulated in human tissues 
 
spota group of 

tissuesb 
UPc DNc miRNA within the spotd 

A muscle+, 
adipose 

 adipose, 
cervix 

blood, thymus, 
placenta 

mir-224; -452*; -452; -193b; -335; -365; -362; -199b; -27aN; -425; 
let-7a_control; -23a; -126*; -214; -27a; -126; -152; -374; -27b 

B epithelial+, 
gastro-
intestinal+ 

immune 
system, 
digestion 

trachea, thyroid mir-142-3p; -338; -363; -146; -146b; -20b; -301 

C gastro-
intestinal+ 
 

epithel, 
digestion, 
kidney, 
prostate 

muscle, 
adipose, 
nervous system 

mir-215; -375; -192.1; -194; -192; -141.1; -141N; -141; -200a; -
200c; -200b; -200cN; -200bN; -31.1; -31; -429 

D epithelial+, 
immune s. 

homeostasis, 
immune 
system 

thyroid, trachea, 
prostate, cervix 

mir-92N; -17-5p; -183; -92; -18; -15b; -106a; -15a; -25; -106b 

E muscle+ 
 

muscle, 
homeostasis; 
blood, brain 

Immune 
system, sexual 
repr., exocrine 

mir-122a; -124b; -124a; cel-124; -30e-3p; -133a; -302d; -302b; -
1; -302a; -422a; -128a; -133b; -197; -491; -378; -328; -181b.1; -
138; -128b; -340; -190; -423; -490; -129; -107; -422b; -425.1; -22; 
-296, cel-2, cel-lin-4, -159a; -104; -108; -105; -136 

F muscle+ 
 

muscle, 
immune 
system, 
homeostasis 

blood, digestion, 
sexual repr., 
exocrine, kidney 

mir-188.1; -95; -150; -155; -181c; -511; -139.1; -505; -342; -101; -
193; -345; let-7i; let-7e; let-7iN; -17-3p; -324-3p; let-7f 
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G brain+ 
 

blood, brain thyroid, 
homeostasis, 
digestion, 
breast 

mir-9; -9*; -137; -323; -433; -219; -204; -153; -485-3p; -432; -127; 
-382; -370; -383; -149; -134; -379; -132; -299; -125b 

H sex. 
organs+ 
 

Immune 
system, 
placenta, 
breast 

thymus, 
trachea, 
prostate, 
bladder 

mir-517c; -516-5p; -518c; -519d; -512-3p; -520h; -518e; -525*; -
520g; -517b; -517a; -519c; -518b; -518a; -518f; -515-3p; -515-5p; 
-525; -520a*; -512-5p; -519e*; -520d; -372 

I sex. 
organs+ 
 

sexual repr., 
endothelial 

adipose, 
digestion,liver, 
spleen, nervous 
tissues 

mir-514; -508; -206; -509; -449; -506; -34c; -202*; -202; -34cN; -
34bN; -34b.1; -510; -196a; -513; -196b; -424; -135a; -432*; -10b; 
-199a; -34aN; -199-s 

J  bladder digestion, 
trachea 

mir-451 

K  bladder trachea, thyroid mir-29a.1 
inv    mir-448; -453; -488; -492; -496; -498; -504; -518f*; -519a; -520d*; 

-410; -412; -524*; -526c; -527; -384; -371; -377; -517*; -326; -
329; -33; -337; -368; -373*; -376b; -380-3p; -380-5p; -450; -503; -
526b*; -325; -325N; -381; -302c*; -96; -519b; -302b*; -220; -299-
3p; -302a*; -208 

 
a see Figure 4.3 for spot assignment 
b tissue categories 
c systems showing up- or downregulation of expression compared with the mean expression of each 

miRNA  
d mirRNA are sorted with decreasing Pearssons correlation between their expression profile and that of 

the respective metagene 
 

4.3. Cancer 
Cancer is a disease of gene function in most respects caused by genetic and epigenetic alterations 
affecting many molecular pathways involving both canonical protein-coding ‘mRNA’-genes as well as 
noncoding ‘miRNA’-genes. Aberrant miRNA expression signatures can serve as a hallmark of cancer 
where miRNA-genes can function as oncogenes and tumor supressors. Global up- (23) as well as 
downregulation (20) of miRNA activity in cancer compared with normal tissues has been reported 
previously. Thus, an evaluation of changes in miRNA expression could provide insight into 
mechanisms of cancer genesis and progression. 
In ref. (3) we identified groups of miRNAs differently expressed in healthy and tumor tissues. Table 
4.3 lists the miRNA taken from the spot-clusters extracted from the miRNA-SOM images. Many of 
them are previously reported as differentially expressed in different cancers (compare with Table 1 in 
(24), Table 1 in (25) and also refs. (26-27)). Upregulated miRNA in cancer act as OncoMiRs whereas 
miRNA acting as tumor supressors are often downregulated. For example, miRNA of the let-7, mir-
126 and mir-130 families are known tumor supressors. They accumulate in spot A which is 
downregulated in colon, bladder, lung and breast cancer. Spot F collects mir-34: miR-34a inhibits the 
expression of multiple oncogenes (e.g., c-Met, Notch-1/Notch-2 and CDK6) by binding to their 3’-
UTR and suppressing, e.g., tumor growth in human gliomas. Many miRNA found in the T_UP (tumor 
up) spot H are known OncoMiRs (e.g., mir-181, -200, -146). Other OncoMiRs such as mir-10 and -
196 are specifically upregulated in the tumor-specific spot C. Another upregulated miRNA in spot H, 
mir-296, is related to angionesis commonly activated in many solid tumors (25).  
The analogous analysis provides groups of mRNAs together with their functional context using gene 
set enrichment analysis. Table 4.4 lists the top-enriched gene sets taken from the gene ontology 
category ‘biological process’ in the overexpression spots of the mRNA SOM portraits together with 
the top-10 concordant genes in each spot. 
In the next step we combined both data sets in terms of spot-spot correlation analysis as described in 
the methodical section of ref. (3). The pairwise correlation heatmap in Figure 4.8 visualizes positive 
and negative correlations in red and blue color, respectively. Each negative correlation might refer to 
downregulation of miRNA and upregulation of mRNA in cancer or vice versa. The blue tiles thus 
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include miRNA acting as tumor suppressors (indicated by minuses in Figure 4.8) and as oncoMiRs 
(plusses) as well. The miRNA regulated in the respective spots of the SOM portraits and the top-
enriched gene set in the respective mRNA spots are given in Figure 4.8. For example, tumor 
suppressor miRNA of the let-7, mir-126 and mir-130 families are clearly identified together with 
upregulated mRNA showing enrichment of processes such as ‘translation’ and ‘receptor activity’. 
OncoMiRs such as mir-10, -196 and -128 are related to mRNA downregulation in the context of 
‘translation’ and ‘proteolysis’. 
 

 
 
Figure 4.8: Pairwise miRNA/mRNA-spot covariance map of the LU-data set. The spots are taken from the 

respective spot summary maps of miRNA and mRNA overexpression shown in (3). The map color 
codes the covariance of all pairwise combinations of spots using their mean metagene expression 
profiles (blue to red refers to -0.8 <cov <+0.8). The spot letters are assigned in Figure 3.2. Their 
preferential up- or downregulation in cancer is indicated by the bars at the left and top borders of the 
map by red or blue, respectively. Minuses and plusses indicate potential tumor suppressors 
(miRNA_DN and mRNA_UP) and oncoMiRs (miRNA_UP and mRNA_DN), respectively. The 
respective top-ranked miRNAs and enriched gene sets are taken from Table 4.3 and Table 4.4, 
respectively. 

 
As second option of joint miRNA and mRNA analysis we trained the SOM based on the combined 
covariance-features (cov-analysis, see (3) for details). It quantifies the degree of concerted miRNA and 
mRNA expression in each sample. Each spot in the obtained portraits thus refers to miRNA/mRNA 
metagene pairs which, in turn, are each associated with lists of single miRNA and mRNA. Table 4.5 
provides the particular miRNAs collected in each of the ‘antiexpression’ spots identified in the 
combined cov-portraits shown in ref. (3). The mRNA-species collected in each of the spots are 
characterized using gene sets enrichment analysis using gene sets of the gene ontology category 
‘biological process’. 
Note that spots of the cov-map refer to combined miRNA- and mRNA-metagenes, each representing 
lists of single miRNA and mRNA genes. One and the same metagene related list of miRNAs (and of 
mRNAs) can be found in different spots: For example, mir-1, -133a and -99a appear together in 
antiexpression spots c, f, g, i and l (as indicated by {...} in Table 4.5) however in combination with 
different mRNA metagenes and thus with different functional themes such as ‘glycogen biosynthesis’ 
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(spot c), ‘protein glycosylation via asparagine’ (f and g), ‘tissue development’ (i) and ‘fibrinolysis’ (f). 
On the other hand, similar lists of mRNA giving rise to enrichment of genes of the set ‘protein 
glycosylation via asparagine’ appear in combination with different miRNA-lists such as {mir-196a; -
128b; -10b; -10a; -190} (spot e), {mir-1, -133a and -99a } (f and g) and {-100; -125b; -195} (g). 
Finally, the cov-spots of antiexpression are predominantly observed either in cancer (e.g., spots c and 
i) or in healthy (f and g) tissues. Hence, the combined SOM provides very detailed and diverse view 
on interrelations between miRNA and mRNA expressions. Its resolution clearly exceeds that of the 
spot-spot correlation analysis discussed above. 
 
Table 4.3: miRNA regulated in normal and tumor samples (LU-data set). 
 
spota b UPc DNc miRNA within the spotd 
H T_UP T_bladder, _uterus; 

_lung; _breast; 
_kidney; (_colon) 

all N_tissues mir-296; -183; -153; -339; -324-3p; -181c; -182; -
200b; -208; -146a; -200a; -141; -210; -328 

E T_UP T_bladder, _prostate, 
_lung 

N_colon, _kidney mir-205; -144; -323 

F T_UP T_uterus; N_lung  mir-34c; -34b 
C T_UP T_kidney  mir-10a, -10b, -196a, -128b 
A T_DN N_uterus, N_lung T_colon, _bladder, _lung, 

_breast 
mir-130a, -126*, let-7e, -140, -133a, let-7d, -99a, -
1, -126, -189 

B T_DN N_prostate, N_breast T_kidney,  mir-214, -199b, -136 
D T_DN N_colon, N_kidney, 

T_colon 
T_bladder, T_prostate, 
T_uterus, T_lung, 
T_breast 

mir-194, -215, -192 

G T_DN N_bladder  mir-216, -217 
 
a spot-letters are assigned in the miRNA summary maps given in ref. (3) 
b up-or downregulated mainly in tumor (T) and normal (N) tissue. T_DN spots are usually also N_UP 

spots and vice versa. 
c particular samples showing this spot with up- (UP) or down- (DN) regulated genes 
d miRNAs are ordered with decreasing significance according to the concordance t-score  
 
Table 4.4: mRNA regulated in cancer (LU-data set) 
 
spota b UPc DNc enriched gene sets in the 

spotd 
top-10 concordant genes in the 
spot e 

F T_UP T_kidney, 
T_bladder, 
T_uterus, 
T_lung, 
T_breast 

T_prostate, 
N_prostate 

receptor activity (-6); keratinization 
(-5); cation transport (-4);  

CDH15, LTK, SYN1, CCL22, DDX11, 
ARFRP1, HLA-DOA, NHLH1, PSMB6, 
PTPRN 

L T_UP T_bladder T_colon glucose homeostasis (-4); defense 
response to Gram−negative 
bacterium (-4) 

KIF14, RP4-669P10.16, RBL1, CDC7, 
PSG7, ADD2, HIST1H4E, SAG, 
CLCN5, CD44 

J T_UP T_lung  Wnt receptor signaling pathway (-
5); negative regulation of 
cyclin−dependent protein kinase 
activity (-4); humoral immune 
response (-4) 

ZBTB33, FMO3, HBQ1, MMP10, PIM2, 
SERPINC1, HTR2C, POU2AF1, CCR6, 
KIAA0368 

M T_UP T_uterus  apoptosis (-4) ATIC, WFDC2, AIMP2, MFSD10, 
IRAK1, LTBR, NPIPL3, TUBG1, 
FLAD1, IER3 

C T_DN T_lung, 
N_lung 

T_colon, 
T_prostate, 
N_prostate 

respiratory gaseous exchange (-8); 
response to hyperoxia (-7); 
complement activation, classical 
pathway (-5) 

MNDA; SFTPA1; PRR4; SFTPC; 
SFTPA2; SFTPB; NRGN; IL1RL1; 
SCGB1A1; ITGB2 
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a1 T_DN T_colon T_lung, 
N_colon 

translation (-10); viral transcription 
(-6); mRNA metabolic process (-5) 

NFKB1, RPS16, ATP6V1G2-DDX39B, 
RP11-40H20.2, EEF1A1P11, SRSF3, 
HMGN2P17, SERINC3, PTGES3, 
ACTN1 

a2 T_DN N_uterus, 
N_lung 
N_breast 

T_colon, 
T_kidney, 
T_bladder, 
T_uterus, 
T_breast 

platelet degranulation (-9); muscle 
contraction (-6); complement 
activation (-6) 

SPARCL1, CNN3, PURA, UQCRB, 
NFE2L2, LEPROT, SAFB, TJP1, FNTA, 
DSTN, ATP2A2 

D T_DN   proteolysis (-11); digestion (-5); 
lipid catabolic process (-4) 

PNLIPRP2, CTRB2, REG3A, PRSS1, 
CEL, CELA2A, CPA1, PNLIP, FGL1, 
AMYP1 

E T_DN N_kidney, 
N_bladder 

T_prostate muscle cell homeostasis (-4); 
intracellular receptor mediated 
signaling pathway (-4) 

MCAM; SPEG; MFAP5; CAMK2G; 
TLE2; MCAM; PDLIM7; MATN2; 
MYOC; LEFTY2 

B T_DN T_prostate, 
T_breast 

T_colon, 
T_kidney, 
T_breast 

pituitary gland development (-5); 
nucleosome assembly (-5); 
cholesterol biosynthetic process (-
4) 

CD38; ALDH1A3; SC5DL; IDI1; ACPP; 
CCK; PPP3CA; KLK2:MSMB; TGFB3 

G T_DN T_bladder T_colon, 
T_prostate 

Excretion (-7); oxidation−reduction 
process (-6); metabolic process (-
6) 

CLCNKB; CYP4A11;RIPK1; SLC1A6; 
MST1P9; SERPINF2; PLG 
CYFIP2; HRG; FGB 

H T_DN T_lung T_prostate cellular response to organic cyclic 
compound (-5); excretion (-4); 
midgut development (-4) 

STIL; TTLL12; DRD3; TOMM34; 
CKMT1B; EEA1; GUCA2B; MEP1A; 
HNF1A; CCBL1 

 
a spot-letters are assigned in the mRNA summary maps given in (3) 
b up-or downregulated mainly in tumor (T). T_DN spots are usually N_UP spots and vice versa. 
c particular samples showing this spot with up- (UP) or down- (DN) regulated genes 
d top enriched gene sets of the Gene Ontology category ‘Biological Process’. The number in the brackets 

is the logged p-value according to Fishers exact test, e.g. -6 means p~10-6. 
e top genes in the list of most concordant mRNAs according to the concordance t-score  
 
Table 4.5: Combined miRNA/mRNA expression in tumor and normal tissues (LU-data set) 
 
spota N_DNb T_DNb miRNA in the spotc enriched gene sets in the spot d 
a N_bladder  {mir-196a; -128b; -30a-3p; -30b; -

30c; -10b; -10a; -190}; -204; -
135a; -135b; -124a; -187 

cellular protein metabolic process; viral 
transcription; translational termination; aerobic 
respiration; translation 

b  T_prostate {mir-199b; -136; -214; -199a; -
199a*}; -17-3p 

cholesterol metabolic process; 
hemidesmosome assembly 

c  T_lung {mir-1; -133a; -99a}; {-199b; -136; -
214; -199a; -199a*}; -338; -100; -
125b; -195; -130a; -189; {let-7d; 
let-7e; -126*; -140; -126; -101}; -
215; -194; -192; -106b; -142-3p; -
142-5p 

neuromuscular synaptic transmission; positive 
regulation of glycogen biosynthetic process; 
DNA damage response, signal transduction by 
p53 class mediator resulting in induction of 
apoptosis; ion transport; synaptic transmission, 
cholinergic; transferrin transport; smoothened 
signaling pathway; ATP hydrolysis coupled 
proton transport; transport; proton transport 

d N_breast  {mir-205; -323; -144; -10a; -215; -
194; -192} 

hemidesmosome assembly; RNA splicing; 
protein N-linked glycosylation via asparagine 

e N_prostate  {mir-196a; -128b; -10b; -10a; -190} protein N-linked glycosylation via asparagine 
f N_lung  {mir-1; -133a; -99a}; {-100; -125b; -

195; -130a; -189} 
protein N-linked glycosylation via asparagine 

g N_uterus  {mir-1; -133a; -99a}; -205;{ -100; -
125b; -195}; -323; -144; -200a; -
200b; -141 

protein N-linked glycosylation via asparagines; 
cellular protein metabolic process; Leydig cell 
differentiation 

h N_lung T_breast {mir-205; -323; -144; -215; -194; -
192}; -200a; -200b; -141 

aerobic respiration; response to reactive 
oxygen species 
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i  T_uterus {mir-1; -133a; -99a}; {-100; -125b; -
195: -130a; -189}; -197; {let-7d; 
let-7e; -126*; -140; -126; -101}; -
182; -200a; -200b; -141 

tissue development; epidermis development; 
rRNA processing; RNA metabolic process 

j N_colon, 
N_uterus 

T_colon,  mir-199a; -199a*; -17-3p; -335; -
181b; -181c 

methylation; single fertilization 

k  T_bladder, 
T_breast 

mir-7; -106b; -142-3p; -142-5p hemidesmosome assembly; cholesterol 
transport; cholesterol metabolic process; cell 
junction assembly 

l N_prostate
, N_breast 

 {mir-1; -133a; -99a};{ -100; -125b; -
195; -130a; -189}; -197; -335; {let-
7d; let-7e; -126*; -140; -126; -101} 

fibrinolysis; complement activation; collagen 
fibril organization; complement activation, 
classical pathway 

 
a ‘underexpression’ spots of the combined map shown in ref. (3) 
b systems with downregulated spots 
c miRNA extracted from the miRNA/mRNA metafeature-combinations taken from the respective spot. 

The brackets collect miRNAs referring to one miRNA metagene (see text).  
d enriched gene sets taken of the gene ontology category ‘biological process’ in the list of mRNA 

extracted from the miRNA/mRNA metafeature-combinations taken from the respective spot 
 

5. Summary and Conclusions 
Case studies illustrating the potency of the portraying approach using Self Organizing Maps were 
presented. Sample portraits of embryonic stem cells, induced pluripotent stem cells and differentiated 
fibroblasts clearly reveals groups of miRNA specifically overexpressed without the need of additional 
pairwise comparisons between the different systems. More than one dozen miRNA are found to be 
differentially expressed between ESC and IPS reflecting the inequivalence of both kinds of stem cells 
with respect to miRNA activity.  
The much more heterogeneous series of human tissues splits roughly into five groups (brain, muscle, 
epithelial, gastrointestinal, sexual organs) according to their miRNA expression landscapes. They are 
characterized by about one dozen distinguishable expression modules. This diversity of miRNA 
expression is comparable with the diversity of mRNA expression patterns in human tissues despite the 
much less number of miRNA species available. Mixed samples with miRNA signatures of different 
tissues can be clearly identified. For example pericardium combines signatures of muscle and adipose 
tissues. Interestingly, immune systems tissues are clearly separated from other tissue types according 
to their mRNA expression signature in contrast to the miRNA expression patterns. 
The joint analysis of miRNA and mRNA in healthy and tumor samples allows identifying potential 
OncoMirs and Tumor supressors Mirs, their potential mRNA targets and functional annotations 
according to positive and negative correlations between both entities and enrichment of sets of genes 
of known function.  
In summary, these analyses demonstrate that the individual portraying of the expression landscape of 
each sample is highly sophisticated because it provides unmistakable fingerprints of the underlying 
expression phenotypes. It enables a very intuitive, image-based perception which clearly promotes the 
discovery of qualitative relationships between the samples in the absence of existing hypotheses. We 
see perspectives for broad applications of this method in standard analysis of single miRNA and 
especially combined miRNA/mRNA data sets. 
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