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Abstract 
The systematic analysis of miRNA expression and of its potential mRNA targets constitutes a basal 
objective in miRNA research in addition to miRNA gene detection and miRNA target prediction. In 
this contribution we address methodical issues of miRNA expression analysis using self-organizing 
maps (SOM), a neural network machine learning algorithm with strong visualization and second-level 
analysis capabilities widely used to categorize large scale, high-dimensional data. We shortly review 
selected experimental and theoretical aspects of miRNA expression analysis. Then, the protocol of our 
SOM-method is outlined with special emphasis on miRNA/mRNA coexpression. The method allows 
extracting differentially expressed RNA-transcripts, their functional context and also characterizing 
global properties of expression states and profiles. In addition to the separate study of miRNA and 
mRNA expression landscapes we propose the combined analysis of both entities using a covariance-
SOM.  
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1. Introduction 
A major goal of machine learning research is to recognize complex patterns and to make intelligent 
decisions based on the data and the particular objective of interest with the help of computers. Usually 
two research problems involving miRNA are tackled with computational methods, namely detecting 
miRNA genes and predicting miRNA targets. The use of machine learning methods has been shown to 
improve the outcome of both miRNA gene detection and -target prediction (see (1) for a review and 
also (2-4)). These approaches typically make use of sequence information (e.g. of short 6-8 nt miRNA 
binding motifs), secondary structure (e.g. of stem-loops using thermodynamic modeling) and 
phylogenetic conservation to classify possible candidates according to their relevance as miRNA 
genes or targets using methods such as hidden Markov models, Random Forest classifiers or Support 
Vector Machines.  
Recently another machine learning technique, namely self-organizing maps (SOM), was applied for 
miRNA target prediction based on clustering of short 3’-untranslated regions (5). SOM machine 
learning was developed by Kohonen about thirty years ago (6). It projects data from the original high 
dimensional space to reference vectors of lower dimension. First studies applying SOM to microarray 
gene expression data were published by Tamayo et al. (7) and Törönen et al. (8). These and later 
applications of the SOM method to expression data emphasized either a gene-centered perspective to 
cluster genes or a sample-centered mode to map individual samples onto the SOM grid enabling the 
classification of samples into a small number of diagnostic or prognostic groups (9-10). The SOM 
method can be configured also in such a way that it combines sample- and gene-centered perspectives 
(9). In such application SOM analysis seems not only well suited to accomplish downstream analysis 
tasks specified above but it also offers several advantages that make this method superior compared 
with other ones. 
In this contribution we address methodical issues of miRNA expression analysis with the special focus 
on the SOM technique. To our best knowledge this method was applied here for the first time to 
analyze miRNA expression data. The paper is divided into two parts: Firstly, we shortly review 
selected experimental and theoretical aspects of miRNA expression analysis. Secondly, our SOM-
method is presented more in detail with special emphasis on miRNA/mRNA coexpression. In this part 
details of the method are exemplified using a combined data set of miRNA and mRNA expression in 
healthy and tumor tissue samples taken from ref. (11).  
 

2. Methods of miRNA expression analysis 

2.1. miRNA detection 
An overview over different methods of miRNA detection including Northern Blot, in situ detection, 
bead techniques and quantum dots is given in refs. (12-13). Currently three methods are most 
commonly applied to measure mRNA and miRNA expression:  
1. real-time reverse transcription-PCR (qPCR),  
2. microarray hybridization, and  
3. massively parallel next-generation sequencing (NGS)  
(see (14-16) and references cited therein). Application of these methods to miRNA faces basically two 
challenges compared to their use in mRNA analysis: the short length of mature miRNA sequences 
(~20 – 25 nt) and the nearly identical sequences of miRNA of the same family whose members can 
differ by as little as one nucleotide and nevertheless can exhibit strong differential expression. The 
specificity required to differentiate between such closely related short RNA fragments surpasses 
requirements for conventional mRNA detection and raises problems due to the constrained probe 
design (microarrays) and sequencing errors (NGS). In contrast to mRNA profiling technologies, 
miRNA profiling must also take into account the difference between mature miRNAs and their 
precursors. 
The technical merits and drawbacks of qPCR, microarrays, and sequencing of miRNAs are similar to 
their application for mRNA or genomic DNA quantitation. The clear advantage of high-throughput 
sequencing compared to microarrays is that it is not hindered by the variability of probe affinities and 
cross hybridization of nearly identical miRNA family members. Moreover, analysis of read patterns 
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allows to identify novel miRNAs (17). On the other hand, RNA ligation and PCR amplification steps 
(see below) and also library preparation bear inherent biases paralleled, e.g. by systematic preferential 
representation of the miRNA complement (18). Moreover, NGS of miRNAs can be influenced by 
sequencing errors and often requires search and removal of adaptor sequences before the miRNA 
sequence itself can be elucidated. 
As in mRNA analysis, microarrays are still a good choice for a standardized genome-wide assay that 
is amenable to high-throughput applications. The differences between available platforms (e.g. 
Agilent; Exiqon, Illumina, Ambion, Combimatrix, Invitrogen, Affymetrix) range from surface 
chemistry and printing technology, through probe design and labeling techniques to the required 
amount of material for hybridization and costs (see (12, 15-16)). Several attempts have been made in 
surface chemistry (e.g. with probes containing locked nucleic acid bases (LNA)) and probe structure 
(e.g. with ‘stem-loop’ probes) to improve the array sensitivity for discriminating mispaired bases in a 
better way and to equalize the probe affinities for miRNA target binding, however partly with 
questionable success (15). miRNA microarrays have high intra-platform repeatability and 
comparability to quantitative qPCR. However, the current lineup of commercially available miRNA 
microarray systems fails to show good inter-platform concordance, probably because of severe 
divergence in stringency of detection call criteria between different platforms (16). Unlike for mRNA 
gene expression (19), only few attempts have been made so far to establish rigorous parameters for the 
evaluation of miRNA microarray platforms using standartized quality measures. 
Several studies report low degree of overlap in the differentially expressed miRNAs between different 
detection methods, not easily attributable to the strength or weakness of the different platforms (15, 
20). qPCR, often considered a ‘gold standard’ in the detection and quantification of gene expression, 
can be used better as a validation rather than as discovery tool because of relatively large number of 
miRNAs presently known. Even qPCR seems to fail as an infallible validation method of miRNA 
microarray data (15, 20). Hence despite its descriptive name and the fact that qPCR has been 
repeatedly used as a validation technique of choice, it is not necessarily appropriate to use qPCR data 
as an absolute ‘gold standard’. The question of a basal standard in miRNA expression awaits further 
advances in both technology (e.g. deep sequencing) and computation (normalization and downstream 
analysis algorithms). 

2.2. Data preprocessing tasks: Calibration and normalization 
qPCR, microarray hybritization as well as NGS methods of miRNA detection face significant 
introduction of technical and experimental bias. Preprocessing aims at minimizing such systematic 
errors and thus has significant impact on downstream analysis and, particularly on the detection of 
differentially expressed miRNA.  
1. Calibration, the first subtask of preprocessing, aims at removing systematic biases from raw data to 
get expression estimates which linearly correlate with the ‘true’ RNA transcript abundance separately 
in each of the samples. This includes method and platform specific steps, such as e.g., baseline 
adjustment and threshold setting for qPCR analyses, background and affinity correction for microarray 
technology, or filtering for small RNA-sequence data (NGS). We refer to special literature addressing 
such method-specific calibration issues (19, 21-22). 
2. The second task, normalization, aims at ensuring comparability of the transcript abundance 
estimates between the different specimen by adjusting the data to batch effects such as different total 
RNA concentrations, total read counts (NGS) or residual background levels (microarrays). 
Normalization is crucial since signal levels may be modulated by the RNA extraction yields and 
inverse transcription and PCR amplification reaction efficiencies in a sample specific way. In general, 
there is no consensually best performing normalization method for any of the three miRNA profiling 
approaches (23). Several normalization techniques are currently applied, some of which are similar to 
mRNA profiling normalization methods, while others consider the specifics of miRNA data. 
Normalization using endogenous control probes represents a simple but powerful strategy widely used 
in miRNA analysis. It is based on the selection of reference miRNAs or other small non-coding (nc) 
RNAs (e.g. small nucleolar RNA) as predefined invariant endogenous controls (24). The expression 
levels of the transcripts measured in each of the samples are then simply scaled by the mean 
expression levels of the controls (preferentially in log-scale) in the respective samples by assuming 
that their variations are solely caused by technical and experimental factors. ncRNAs other than 
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miRNA might be problematic because they do not mirror the physico-chemical properties of miRNA 
and because ncRNA abundance migth not reflect the overall activity of the miRNA processing 
machinery. It escpecially raises problems if the total miRNA level alters as in comparisons of multiple 
tissues or cell lines (15). Selection of invariant ‘housekeeping’ miRNAs identified by different 
algorithms is superior over small ncRNA based normalization (see (23) and references cited therein). 
Another normalization strategy uses global RNA expression measures as intrinsic control. It assumes 
that the overall transcripton level is constant and one can use, e.g., the median or mean expression of 
all transcripts measured in each sample as reference scale. Other, more sophisticated methods such as 
quantile normalization (leveling the expression frequency distributions) (25) or LOESS (26-27) (local 
regression; leveling the local mean) scale the frequency distribution of expression values of all 
samples or their local, expression dependent mean, respectively.  
Global miRNA expression patterns (and potentially also the expression levels of endogenous controls) 
however are thought to change dramatically in response to Drosha and histone deacetylase levels, cell 
division status, neoplastic transformation, developmental stage(s), circadian rhythms, cellular stress, 
and other factors. Hence the assumptions - common to many mRNA expression profiling experiments 
- that overall RNA transcription is constant, and that a low percentage of individual transcripts are 
changed under different test conditions, are mostly not applicable to miRNA studies. The nature of 
miRNA profiling data which mirrors the distinct biogenesis and physico-chemical nature of miRNAs 
can challenge conventional normalization methods originally developed for mRNA expression data. 
Innovative approaches are required in order to reconcile miRNA profiling data analyses with the 
specifics of miRNA biology. This can make use of combinations of qPCR, microarray and NGS data 
for mutual validations possibly circumventing the need for external references. 

2.3. Downstream analysis tasks 
Downstream analysis follows preprocessing.  
1 It includes tasks such as differential analysis, also known as marker selection. It is the search for 
genes that are differentially expressed in distinct phenotypes, treatment conditions, developmental 
stages etc. One can assess differential expression using different scores such as simple fold change 
measures or t-test statistics (see below).  
2. Another task, supervised learning and class prediction, is the search for a gene expression signature 
that predicts class (phenotype) membership.  
3. Class Discovery (unsupervised learning) is the search for a biologically relevant unknown group 
identified by a gene expression signature or a biologically relevant set of co-expressed genes. The 
basic methodology for class discovery is clustering.  
4. Finally, functional context analysis is the search for sets of genes differentially expressed in distinct 
phenotypes using enrichment techniques. We will address these tasks below in the context of SOM 
machine learning. 

2.4. Data 
We selected a data set on healthy and tumor tissues to illustrate different aspects of expression analysis 
using SOM machine learning in form of a case study. This so-called LU-cancer set contains miRNA 
and mRNA measurements from the same samples of seven healthy and tumor tissues (colon, kidney, 
bladder, prostate, uterus, lung, breast) (11). miRNA were measured using a bead-based profiling 
method estimating the abundance of 217 miRNAs. mRNA expression was determined using 
microarrays. 
 

3. Discovering miRNA expression phenotypes using SOM 

3.1. Input data 
In general, we analyze the expression levels, Enmi, of n=1…N genes measured under m=1…M 
different conditions such as different sample types (e.g. tissues or cell lines), time points (e.g. in a time 
series after perturbation), treatments (e.g. using different chemicals) or patients (e.g. from a cohort 
study). Each condition defines a different molecular expression phenotype which can be measured in 
i=1…Rm replicates. Replicates might be technical (e.g. by analyzing the RNA extracts several times) 
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or biological (e.g. by extracting RNA from different equally treated specimen) ones. In addition we 
define phenotype classes as groups of samples of a common functional context such as tissue 
categories (e.g. nervous or muscle tissues, cancer or healthy samples). The choice of classes depends 
on the issue studied. For miRNA and mRNA expression studies the number of different transcripts is 
typically about N=200 – 1,000 and 10,000 – 40,000, respectively. Combined data sets thus contain 
about 2x106 – 4x107 pairwise combinations of miRNA/mRNA features. Below we will use the termini 
‘transcript’ and ‘gene’ as synonyms. 

3.2. Preprocessing 

In the first step, raw expression data of each of the 
1

M

m
m

R
=
∑  measurements are calibrated and 

normalized. For mRNA GeneChip expression data we used hook calibration of the raw probe 
intensities combined with quantile normalization of the expression values as described previously 
(10). miRNA expression data were taken from the original publications and then quantile normalized. 
The replicated expression values are optionally log-averaged over all replicates i for each condition, 

10 10
1

1log log
mR

nm nm nmi
im

e E E
R•

=

≡ = ∑ . Alternatively one can process each replicate individually to 

characterize the specifics of its expression. In this case the sample index m also runs over the 
replicates. Finally, the log-expression values of each transcript were centered with respect to their 
mean expression, en•, averaged over all conditions studied, nm nm ne e e •∆ ≡ −  . 

3.3. Training the SOM 
Self-organizing map (SOM) machine learning was applied to all preprocessed expression data. The 
expression data are considered as N vectors of dimensionality M defining the expression profiles of the 
genes over all phenotypes studied, { }1,..., ,...,n n nm nMe e e e∆ ≡ ∆ ∆ ∆



 (n=1…N). The algorithm 
initializes K so-called metagene expression profiles also representing vectors of length M, 

{ }1( 0) ,...,k k kMe t e e∆ = ≡ ∆ ∆


 (k=1…K, we use the same symbol ∆e as above but substitute the gene 
index n by the metagene index k; the argument t=0…T denotes the iteration step). The metagenes are 
arranged in a two-dimensional grid of rectangular topology K= Kx⋅Ky with Kx=10 - 60 and Ky≈Kx tiles 
per x- and y-dimension, respectively. Then a single gene n’ is picked from the list and its profile 
vector 'ne∆  is compared with all metagene profiles using the Euclidean distance ||…|| as similarity 
measure. The gene picked is associated with the metagene profile of closest similarity, 

'min { ||}n ke e∆ −∆
 

 for k’=k. This ‘winner’ metagene profile k’ is then modified, such that it a bit 
more closely resembles the expression profile of the selected gene. In addition, the neighboring 
metagene vectors in the two-dimensional grid adjacent to this winning metagene are also modified, so 
that they also resemble the expression vector a little more closely. The update rule for the metagene 
vectors at step t+1 can be written as ( )' '( 1) ( ) ( )k k k k n ke t e t t h e eη∆ + = ∆ + ⋅ ⋅ ∆ − ∆

   

 where 0<η(t)<1 is 
the learning rate decaying with progressive iteration. hk’k denotes the neighborhood kernel around the 
winner metagene. Different neighborhood kernels such as bubble (only nearest neighbors are 
considered) or Gaussian (i.e., a smooth decaying neighborhood) can be chosen. This process is applied 
to all genes and repeated a few hundred thousand times. The radius of considered neighbors decreases 
with progressing iterations. As a consequence, less metagene vectors are affected by smaller amounts. 
The metagene vectors therefore asymptotically settle down. The resulting map becomes organized 
because the similarity of neighboring metagenes decreases with increasing distance in the map. The 
algorithm ensures that all ‘single’ genes are assigned to ‘their’ metagene vector of closest similarity. 
The training of the SOM also ensures that the obtained metagene profiles cover the manifold of 
different single gene profiles seen in the experiment. 
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3.4. Staining the SOM: Individual phenotype portraits 
In our application the method sorts the individual genes into K metagene-clusters. Each cluster is 
characterized by one metagene profile which is used for visualizing the expression pattern of each 
phenotype. To create an image that portrays the individual expression state of all genes in one of the 
phenotypes we first normalize the metagene expression data to values between -1 and +1 according to 

( ) ( )min max min2 / 1
m m m

norm
km kme e e e e

• • •
∆ = ∆ −∆ ∆ −∆ −  where max/min

m
e
•

∆  denotes the maximum/minimum 

values of 
km

e∆  for a given m. Then, each tile of the grid is stained according to its norm
kme∆ -value by 

applying an appropriate color code. Our standard ‘logFC’-color scale linearly transforms the 
normalized logged fold change, logFC= norm

kme∆  into the colors green to maroon for increasing 
0kme∆ ≥  and green to dark blue for decreasing 0kme∆ ≤ . Also other color codes can be applied to 

highlight, for example, intermediate and low expression degrees (for details see (10, 28)). Although 
colors are reproduced in grey-scale in this publication we will describe the images assigning the ‘true’ 
colors used in the default version of our analysis pipeline.  
 

 
 
Figure 3.1: Gallery of miRNA, mRNA and combined miRNA/mRNA expression portraits of normal and tumor 

tissues taken from the LU-data set. The larger portraits on the right are mean portraits averaged over all 
individual normal and cancer portraits, respectively. 

 
The SOM algorithm arranges similar metagene profiles together into neighbored tiles of the map 
whereas more different ones are located at more distant positions. In consequence, neighbored 
metagenes tend to be colored similarly owing to their similar expression values. Therefore, the 
obtained mosaic portraits show typically a smooth blurry texture with red and blue spot-like regions 
referring to clusters of over- and underexpressed metagenes. These blurry images portray the 
expression landscape of each particular phenotype in terms of a visual image. Metagenes from the 
same spot are co-expressed in the experimental series whereas different, well-separated 
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overexpression spots in the same image refer to metagenes commonly overexpressed in the particular 
phenotype but differently expressed in other phenotypes. 

3.5. Clustering the metagenes: Spots and blurs 
Figure 3.1 shows the tissue-specific SOM portraits of miRNA and mRNA expression in normal and 
cancer samples. The red/blue spots are clusters of metagenes over/underexpressed in the respective 
samples. In general, the spot patterns of the individual portraits are relatively heterogeneous. Mean 
subtype-specific portraits are calculated as average value of each metagene expression over all 
phenotype portraits of one class, km m class

e
∈

∆ . The mean portraits (see large mosaics in the right part 

of Figure 3.1) reveal an antagonistic pattern of up- and downregulated spots in normal and diseased 
tissues. In the miRNA and mRNA maps one observes virtually only two to three spots upregulated 
(red) in normal tissues and downregulated (blue) in tumor tissues (and vice versa) which are located 
preferentially in opposite corners of the map. 
Different metrics can be applied to select metagene clusters: Firstly, we define over- (and under-) 
expression spots by applying a simple percentile criterion which selects a certain fraction (usually 2%) 
of the metagenes showing largest (or smallest) expression in the particular phenotype. The obtained 
over- and underexpression spots are individual properties depending on the particular metagene 
expression in each sample. They can change their size from phenotype to phenotype and they can even 
disappear or transform from an over- into an underexpression spot or vice versa. 
Alternatively one can also apply mutual correlation or Euclidean distances between neighbored 
metagene profiles of the SOM as similarity measures for appropriate clustering (see ref. (10)).  

3.6. Adjusting the SOM 
SOM machine learning represents an unsupervised clustering algorithm whereby the number of tiles 
and thus the resolution of the map is predefined by the researcher and therefore constitutes the option 
of supervised adjustment of the results. Neighboring tiles might cluster into one spot together because 
they collect genes of similar expression profiles. These spots, their number, shape and size, depend on 
the intrinsic expression landscape of the phenotypes studied. In this sense SOM spot-clustering is a 
higher-order unsupervised clustering algorithm which potentially clusters the data into biologically 
meaningful groups or ‘modes’. This mode-selection is however based on the underlying ‘pixelation’ of 
the expression landscape which should be chosen such that the SOM algorithm produces a stable and 
consistent spot pattern. 
The SOM can be configured by the number of tiles per image, different topologies (e.g., with 
rectangular or hexagonal lattices), and different neighborhood kernels describing the range and 
strength of interactions between the nodes during the training process. For small SOM sizes each 
metagene will contain a large number of single genes profiles whereas large sizes enable the 
distribution of the genes over a larger number of metagene clusters which more specifically adapt to 
details of the expression landscape. 
We found that the number of clusters and their assignment converges if the number of tiles exceeds 
the number of overexpression spot clusters by about two orders of magnitude. This asymptotic 
behavior indicates that larger SOM sizes essentially do not further improve the information content of 
the map and that the obtained clusters indeed reflect intrinsic properties of the overall expression 
pattern. Alternative topologies such as the hexagonal ones and different neighborhood kernels only 
weakly affect the obtained spot textures (see supplementary text in (10)).  

3.7. mRNA/miRNA coexpression 
The SOM training described in the previous subsection applies to differential expression of single 
genes. Hence, mRNA and miRNA data are treated separately providing separate SOMs. One can 
combine both data sets if measured in the same series of condition by substituting nme∆  by all 
pairwise products of the expression values of the mRNA and miRNA genes, 

1 2 1 2
cov

n n m n m n m

mRNA miRNAe e= ∆ ⋅∆  (n1=1…N1 and n2=1…N2 are the gene indices of mRNA and miRNA 
expression values, respectively). The size of the data increases from N1~104 (mRNA) and N2~103 
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(miRNA) to N1⋅N2~107 (combined miRNA/mRNA) which usually exceeds the maximum data 
capacity of our software application (~5x104) by several orders of magnitude. 
One option to handle this problem is to study miRNA/mRNA metagene pairings instead of pairs of 
single genes, i.e. 

1 2 1 2
cov

k k m k m k m

mRNA miRNAe e= ∆ ⋅∆  (k1=1…K1 and k2=1…K2 are the metagene indices of 
the mRNA and miRNA expression SOM, respectively). Then, covk1k2m defines the sample-specific 
covariance term of both data sets which, in turn, is related to the correlation coefficient of the 

metagene profiles k1 and k2, 
1 2 1 2

2 2
1 2 cov / ( ) ( )

k k m k m k m

mRNA miRNA
k k

m m m
r e e= ∆ ⋅ ∆∑ ∑ ∑ . Large positive 

values of 
1 2

cov
k k m

 thus indicate concerted up- or down-regulation of mRNA and miRNA expression 
whereas negative values refer to antagonistic changes of both RNA species in sample m. The size of 
the combined data is K1⋅K2~ 106, which requires further reduction. We filtered miRNA and mRNA 
metagene profiles for largest variance and population with single genes. Particularly, metagenes are 
selected whose variance and population exceeds the respective mean value averaged over all 
metagenes. 
SOM training then provides meta profiles for the combined data, cov

km
, in analogy to the separate 

data sets as described in the previous subsection. Each meta-covariance feature describes a 
characteristic profile of the combined expression data observed in the data set. The respective 
microcluster contains combinations of mRNA and miRNA with similar profiles of their combined 
expression values as the meta feature, i.e. 

1 2
cov cov

k k m km
∝ . 

The third row of images in Figure 3.1 shows the combined SOM portraits of miRNA/mRNA 
coexpression. The individual portraits and especially the mean map are more heterogeneous showing 
more spots than the respective miRNA and mRNA maps. The mean combined portrait shows more 
than five spots of preferentially concerted (red) changes in normal tissues and anti-concerted (blue) 
changes in tumor samples. These different trends presumably reflect deregulation of mRNA and 
miRNA expression in the respective spots: concerted changes between both species in healthy tissues 
change into anti-concerted changes in the tumor samples. 
All subsequent analyses apply to metagenes of single differential expression, 

km
e∆ , and to metagenes 

of combined differential expression, cov
km

, as well. Special analyses considering the pairwise 
character of the combined data will be addressed separately. 
Another alternative option of studying miRNA/mRNA coexpression makes use of spot-spot 

correlation coefficients, ( )1 2 1 2

2 2
1 2 / ( ) ( )

s m s m s m s m

mRNA miRNA mRNA miRNA
s s

m m m
r e e e e= ∆ ⋅∆ ∆ ⋅ ∆∑ ∑ ∑ , where, e.g., 

1s m

mRNAe∆  is the mean expression of spot s1 averaged over all metagenes included. The cross correlation 
coefficient is determined for all pairwise combinations of miRNA and mRNA spots taken from the 
respective overexpression summary maps (see next subsection, s1 and s2 are the respective spot 
indices). This analysis reduces the number of combined features to about 102 due to the relatively 
small number of spots identified in the miRNA and mRNA SOM. An example of such analysis is 
provided in the accompanying contribution (29). 

3.8. Spot overviews 
The texture of the SOM visualizes ‘local’ expression properties in terms of spots due to high and low 
expression levels in the individual phenotypes. For an overview we select all overexpression spots 
observed in at minimum one of the phenotypes into one overexpression summary map. The respective 
underexpression summary map provides an overview about all observed underexpression spots.  
Figure 3.2 shows the over- and underexpression summary maps of the LU-data set. Note that the spot 
patterns are more diverse compared with the mean maps shown in Figure 3.1 because alternating over- 
and underexpression data in the set of samples are not averaged out. The single (mRNA and miRNA) 
data maps illustrate that regions overexpressed in normal tissues typically become underexpressed in 
tumor samples and vice versa. Spots showing such antagonistic changes are candidates for tumor-
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relevant features. The combined data again provides a slightly different picture with mostly different 
patterns of the over- and underexpression spots. 
 

 
 
Figure 3.2: Over- and underexpression spot summary maps of the miRNA, mRNA and combined 

miRNA/mRNA expression portraits shown in Figure 3.1. Spots are annotated using capital letters 
(overexpression) or lower case letters (underexpression) where the latter ones are chosen to agree with 
respective overexpression spot annotation for spots having a big overlap of metagenes in both summary 
maps. Regions up- or downregulated in normal (N_up, N_down) and tumor (T_up, T_down) samples 
are indicated by the ellipses. The barplots provide the fractional abundance of each spot in healthy (red) 
and tumor (cyan) tissues. 

 
The abundance of each spot (s=A,B,…) in the individual portraits is calculated as its relative 
frequency of appearance in the samples of each class (c=N, T), sc sc cx n / N=  , where the numerator 
and denominator define the number of sample portraits ncs showing a particular spot and the total 
number of samples per class Nc, respectively. The spot abundances are represented as stacked bar for 
each spot. The integral abundance, s sc

c
X x=∑ , can be interpreted as the mean number of classes 

seen by the respective spot. Its maximum possible value equals the number of classes considered. 
The respective barplots in Figure 3.2 show the clear preference of the selected spots to overexpress 
metagenes in normal tissues (N_UP) and to underexpress these metagenes in tumor tissues (T_DN) 
and vice versa (i.e. N_DN and T_UP). These class-specific spots tend to accumulate in regions 
detected as differentially expressed in the mean portraits (see red and blue ellipses in Figure 3.2 
referring to N_UP and T_UP spots, respectively). On the other hand, T_UP and N_UP mix in the right 
upper corner of the mRNA-overexpression map reflecting more complex patterns than the mean maps 
in Figure 3.1.  
The spots observed in the combined data sets are more or less unique for the individual samples, i.e. 
only a few of them are found in more than one sample. ‘Coexpression’ spots are more abundant in 
tumor samples whereas ‘antiexpression’ spots are more abundant in normal samples. The non-
equivalence of ‘over-‘ and ‘underexpression’ spots reflects the fact that concerted modes dominate in 
tumor samples whereas anti-concerted modes dominate in healthy tissues. 
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3.9. Supporting maps 
The individual SOM portraits partly mask information about the single gene level. For example, it 
remains unclear how many single genes are associated with one particular metagene, and thus how 
importantly it contributes to the overall expression landscape. We therefore defined a series of 
supporting maps which provide additional information about selected properties of the metagene-
miniclusters: 
The population map plots the number of real genes per metagene in logarithmic scale, log nk. The 
variance map illustrates the variability of the metagene profiles, ( )2var / ( 1)k km k

m
e e M•= ∆ −∆ −∑ , 

where 0ke •∆ =  is the respective mean expression averaged over the profile. The entropy map plots 

the standard entropy of each metagene profile, 2logk km km
m

h p p= −∑  where pkm is the relative 

frequency of the three levels of gene expression: overexpression, underexpression and non-differential 
expression of metagene k. Therefore expression values of the metagene profiles of each sample are 
assigned to one of the three levels by application of a defined threshold (here the 25- and 75-percentile 
of all metagene expression values was used). hm is restricted to values in the interval [0, log2 3]. An 
entropy value of 0 represents a perfectly ‘ordered’ state, where all metagenes are assigned to only one 
of the expression levels. Contrary, maximum value of log2 3≈1.58 is reached when metagenes 
uniformly distribute over the three levels. 
The 217 miRNAs studied in the LU-data set distribute over K=30x30 metagenes giving rise to a 
relatively sparse populated map with a series of empty metagenes (Figure 3.3, left part). The mean 
number of single genes per metagene is G/M~ 0.24, with G being the number of genes per metagene. 
The mRNA map of size K=50x50 contains 15,500 single genes. It is much denser populated (G/M~ 
6.2) with less empty metagenes which however accumulate into larger empty areas. These empty 
regions usually separate different types of profiles defining different modes of regulation. Such modes 
appear as separate spots of highly variant (red) metagenes in the variance map (Figure 3.3, middle 
part). These maps show that the (Euclidean distance-based) SOM algorithm not only clusters 
correlated expression profiles together in different regions of the SOM but also genes of virtually 
invariant profiles. These two groups of profiles tend to occupy different regions either along the edges 
or in the central area of the mosaic image, respectively. 
The combined map of size K=50x50 collects 6,100 miRNA/mRNA features (G/M~ 2.4). It is much 
more fragmented into regulatory modes as indicated by the spot pattern of the variance map. The blue 
spots refer to relatively invariant meta-profiles forming another kind of separators between different 
regulatory modes.  
The entropy maps (Figure 3.3, right part) closely resemble the respective variance maps. The color of 
each pixel visualizes the information content of each metagene profile. Invariant profiles contain no 
sample-specific information (low entropy, blue areas) whereas variant profiles are more informative 
(red areas). Interestingly, the entropy map is more structured than the variance map. 
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Figure 3.3: Supporting maps miRNA, mRNA and combined miRNA/mRNA expression data of the LU-data set. 
 

3.10. Global portrait characteristics 
In order to estimate global properties of the expression landscape of every phenotype we calculated the 
variance of metagene expression values in each SOM image, ( )2var / ( 1)m km m

k
e e K•= ∆ −∆ −∑ , and 

its entropy, 2logm km km
k

h p p= −∑  where pkm is the relative frequency of expression as described 

above for the supporting maps. Here, the relative frequency refers to the expression state m and not to 
the expression profile k. The global entropy thus characterizes the information content of each portrait. 
Both, the variance and the entropy assess the expression landscape of phenotype m as seen by the 
SOM portrait. The variance estimates the variability of the metagene expression and the entropy its 
information content, or in other words, its degree of ordering. 
The bar plots in Figure 3.4 illustrate that entropy and variance of the expression states mutually 
correlate. Entropies accentuate highly ordered states (low entropy) whereas variances accentuate 
strongly variable ones. Entropies and variances of miRNA and mRNA expression states are almost 
comparable in their order of magnitude reflecting similar complexities of the respective expression 
landscapes. The combined miRNA/mRNA covariance-patterns slightly lose information (i.e., they 
become more evenly distributed) for part of the cancer tissues (for bladder, prostate, uterus, lung and 
breast cancer). This trend might reflect the partial loss of mutual co-regulation between miRNA and 
mRNA expression in the diseased tissues. 
Other global properties of the expression landscapes are the mean spot number detected per class, the 
mean ‘shape’ of the spots and the fraction of overexpressed metagenes. The shape is defined as, 

2/m m mshape A L=  where Am denotes the number of tiles included in all spots observed and Lm is the 
number of tiles forming the border of the spots with at minimum one adjacent tile outside the spots. It 
judges the fuzziness of the observed spots in the portraits. One finds that the number of spots per 
mRNA-portrait (and thus the number of distinct regulatory modes) slightly exceeds that of the 
miRNA-portraits. Interestingly, the number of overexpressed miRNA-metagenes is smaller in most of 
the cancer tissues than in the respective healthy tissues. This relation reverses for the number of 
overexpressed mRNA-metagenes: i.e. one observes an increased number of overexpressed metagenes 
in cancer. This trend presumably reflects the antagonistic effect of miRNA and mRNA expression 
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expected: Particularly, global downregulation of miRNA expression in cancer (compared with healthy 
tissues) associates with global upregulation of mRNA expression. The global down regulation of 
miRNA expression in tumors was reported also in the original paper (11). It has been hypothesized 
that that global miRNA expression reflects the state of cellular differentiation and that the abrogation 
of which is a hallmark of cancers. 
This trend also corresponds to the loss of information of the covariance landscape discussed above. 
Note also that the number of spots observed in the cancer covariance landscapes in most cases exceeds 
that observed for normal tissues. This difference can be interpreted in terms of a loss of concerted 
expression of both, miRNA and mRNA. The larger number of spots in the cancer samples is paralleled 
by a decreased shape-parameter which simply reflects the increase of fuzziness with increasing spot 
number.  
The global characteristics of the expression landscapes of miRNA, mRNA and of their combination 
thus describe distortions of the gene regulation patterns due to disease.  
 

 
 

Figure 3.4: Sample related metagene-entropy, -variance, spot shape, spot number and area of overexpressed 
regions of the sample portraits of the LU-data set of healthy (red) and tumor (cyan) tissues (c: colon; k: 
kidney; a: bladder; p: prostate; u: uterus; l: lung; b: breast). 

 

3.11. Phenotype similarity analysis 
This task aims at establishing the mutual relations between the phenotypes studied to group them into 
different classes. Particularly, we analyze the hierarchy of similarities and estimate the mutual 
distances between the expression states. Similarity analysis compares the expression states as seen by 
the SOM portraits. It consequently uses the metagenes instead of single genes as the basal data set. 
Using meta- instead of single genes is advantageous because it improves the representativeness and 
resolution of the results (10). 
We applied second-level SOM analysis as proposed by Guo et al. (30) as a first option to visualize the 
similarity relations between the individual SOM-metagene expression patterns. The method clusters 
the samples and not the genes as in first-level SOM analysis. In addition, we characterize similarities 
using the neighbor-joining algorithm based on the Euclidean distances in terms of similarity trees (31).  
The separate miRNA and mRNA data well separate healthy and tumor samples in both plots in most 
cases (Figure 3.5). This result reflects the tumor-specific over- and underexpression of selected spots 
discussed above (see Figure 3.2). Note that the normal and tumor samples of colon (miRNA) and 
prostate (mRNA) are found at the same branch of the respective trees reflecting the close similarities 
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of the respective SOM portraits (see Figure 3.1). The question about the origin of this result is beyond 
our study. They possibly reflect weak tumor effects or strong contamination of the tumor samples with 
healthy tissue. The combined miRNA/mRNA data allows virtually no differentiation between tumor 
and healthy tissues based on a common set of features. Essentially each sample obeys its own 
specifics. This result reflects the lack of clearly resolved tumor-specific spots in the sample portraits 
(Figure 3.1). 
 

 
 
Figure 3.5: Similarity analysis using 2nd level SOM (left part) and nearest neighbor joining trees (right part) of 

miRNA, mRNA and the combined cov-expression landscapes of healthy (red) and tumor (cyan) 
samples. 

 

3.12. Differential expression and concordance analysis 
The tasks described above characterize the metagene expression landscapes. Usually researchers are 
interested to select single genes associated with each of the spot cluster detected. Two different 
analyses are implemented in our method. Concordance analysis estimates the similarity between each 
metagene profile and the profiles of the associated single genes and ranks them with decreasing 
agreement using either correlation- or distance-based significance scores for each spot cluster. 
Concordance analysis thus refers to the whole profiles of all different expression states studied. In 
contrast, differential expression analysis estimates the most prominently up- and/or downregulated 
single genes in each spot cluster using scores based on fold change or t-statistics. 
Correlation-based concordance simply uses the correlation coefficient between each single gene and 

the respective metagene, 2 2( ) /nk nm km nm km
m m m

r e e e e= ∆ ⋅∆ ∆ ⋅ ∆∑ ∑ ∑ , and then estimates the p-value 

for each gene using the t-statistics, 2/ (1 ) / ( 2)nk nk nkt r r M= − − . Distance based concordance uses 

the sum of squared normalized residual expression, ( )2 2 2( ) / / ( 1)nk nm km nm
m

d e e SD M= ∆ −∆ −∑  (SD 

is the regularized standard deviation of the gene expression in state m, see below). Significance is then 
estimated using χ2 statistics. The latter distance-based measure allows to identify similarities between 



14 
 

virtually invariant profiles whereas correlation-based measures preferentially select highly variant 
profiles. 
For differential expression analysis a large multitude of various methods are available to assess 
statistical significance. As the standard method we apply a regularized t-score on the single gene level, 

/ ( / )nm nm nm mt e SD R= ∆ . The regularized standard deviation, 2 2(1 ) ( )LPE
nm nm nmSD eλσ λ σ≈ + − , 

is calculated as weighted mean of the ‘individual’ standard deviation of the expression of each gene 
(σnm) and of a locally pooled error value ( ( )LPE

nmeσ ). Both values are combined using the empirical 
scaling factor λ= 0.5. Such regularized t-scores consistently lead to relatively accurate gene rankings 
which might outperform simple t-statistics or FC-scores (32). The regularized t-statistics transforms 
into p-values characterizing the significance of differential expression for each gene assuming 
Student’s t-distribution. Consideration of the density distribution of the p-values of all genes in each 
phenotype allows to transform the p-values into false discovery rates to control the number of false 
discoveries in the multiple testing problem (33). Differential features extracted from the LU-dataset 
are given in the accompanying paper (29). 

3.13. Gene set enrichment analysis 
Gene set analysis aims at evaluating the relevance of selected predefined sets of genes in the 
expression landscapes of the phenotypes studied. A gene set usually collects genes of common 
functional context together. This context is given by independent knowledge such as the Gene 
Ontology (GO) classification (e.g. according to selected GO-terms such as ‘biological process’, 
‘molecular function’ or ‘cellular component’), chromosome location, involvement into biochemical 
pathways or independent gene expression studies on diseases or toxic effects. For miRNA/mRNA 
coexpression studies mRNA-targets for one selected miRNA provide specific mRNA-target sets or 
vice versa, sets of miRNA affecting the same mRNA are collected together into miRNA-sets. 
Basically, gene set analysis estimates the enrichment of genes of the set within a list of genes which is 
obtained independently. Our SOM method provides a natural choice of gene lists in terms of the genes 
contained in the spot clusters defined above. Particularly, each gene studied is classified according to 
two memberships leading to a 2×2 contingency table for further testing: firstly, its membership in the 
set of functionally related genes of length Nset (N+ ‘positive’ genes in list and set and (Nset - N+) 
‘negative’ genes in set but not in list) and, secondly, its membership in the respective list of length Nlist 
((Nlist- N+) genes in list but not in set; (N- (Nset+Nlist)+N+) genes not in list and set as well). The 
intersection of the set and the list is given by the number of ‘positive’ genes, N+. For any gene set, 
right-tailed modified Fisher’s exact test was used to determine whether the number of genes with this 
set is overrepresented in a particular list of genes included in a spot-cluster. The hypergeometric 
distribution then provides a p-value for each set and spot which estimates the cumulative probability to 
find a stronger overlap between the genes in a spot cluster and the set than expected by chance given a 
certain total number N of genes studied (28). This ‘overrepresentation’-analysis assesses the 
probability to find more members of the set in the list compared with their random appearance.  

3.14. Program and availability 
The SOM method is implemented as R program ‘oposSOM’ available on CRAN (Comprehensive R 
Archive Network, http://cran.r-project.org/) and on our website http://som.izbi.uni-leipzig.de. 
 

4. Notes, conclusions and outlook 
SOM machine learning enables analysis of miRNA expression landscapes. The method extracts 
differentially expressed single features, their functional context and also characterizes global 
properties of expression states and profiles. Despite the relatively small number of miRNAs, their 
expression landscapes are of similar heterogeneity as that of the much more numerous mRNAs in the 
systems studied. Application of SOM portraying to miRNA expression was performed for the first 
time to our best knowledge. Also the combined analysis of miRNA and mRNA differential expression 
using covariance terms is novel. It provides a very detailed resolution of the coexpression landscape 
which however awaits for further discovery and interpretation. SOM clusters features (miRNA- and 
mRNA-expression or miRNA/mRNA covariance) of similar profiles together. Enrichment techniques 

http://cran.r-project.org/
http://som.izbi.uni-leipzig.de/
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allow association of functional themes with each of the clusters. The spectrum of available gene sets 
can be extended in future studies by taking into account sets of mRNA targets of single miRNA, sets 
of miRNA targeting the same mRNA or sets of miRNA regulated in the same functional context. The 
sets might be collected using computational as well as experimental methods. Of special interest in 
this context are new experimental techniques such as high-throughput sequencing of RNAs isolated by 
crosslinking immunoprecipitation (HITS-CLIP) that directly decode mRNA-miRNA interactions (34). 
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