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Abstract: Glioma is a clinically and biologically diverse disease. It challenges diagnosis and prognosis due to its 
molecular heterogeneity and diverse regimes of biological dysfunctions which are driven by genetic and epigenetic 

mechanisms. We discover the functional impact of sets of DNA methylation marker genes in the context of brain cancer 
subtypes as an exemplary approach how bioinformatics and particularly machine learning using self organizing maps 
(SOM) complements modern high-throughput genomic technologies. DNA methylation changes in gliomas comprise 

both, hyper- and hypomethylation in a subtype specific fashion. We compared pediatric (2 subtypes) and adult (4) 
glioblastoma and non-neoplastic brain. The functional impact of differential methylation marker sets is discovered in 
terms of gene set analysis which comprises a large collection of markers related to biological processes, literature data 

on gliomas and also chromatin states of the healthy brain. DNA methylation signature genes from alternative studies well 
agree with our signatures. SOM mapping of gene sets robustly identifies similarities between different marker sets even 
under conditions of noisy compositions. Mapping of previous sets of glioma markers reveals high redundancy and 

mixtures of subtypes in the reference cohorts. Consideration of the regulatory level of DNA methylation is inevitable for 
understanding cancer genesis and progression. It provides suited markers for diagnosis of glioma subtypes and 
disentangles tumor heterogeneity. 
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1. INTRODUCTION 

Genomic technologies offer the promise of a 

comprehensive understanding of cancer and to 

characterize its molecular determinants in terms of 

‘marker signatures’. A ‘marker signature’ can be 

defined as a concerted alteration of a set of molecular 

features with specificity in terms of diagnosis, 

prognosis or prediction of therapeutic response [1]. 

Marker signatures define cancer subtypes and provide 

a central tool to disentangle tumor heterogeneity on the 

molecular level. Marker signatures can be used for 

classification purposes solely without relevance for 

cancer biology. On the other hand, the ‘guilt by 

association’ principle assumes that the concerted 

behavior of sets of molecular features reflects 

underlying common functions [2]. In this publication we 

discover the functional impact of sets of DNA 

methylation marker genes in the context of brain 

cancer subtypes as an exemplary approach how 

bioinformatics and particularly machine learning 

complements modern high-throughput genomic 

technologies. 

High-throughput gene expression analysis has 

revolutionized genetics over the last 15 years since the 

seminal publication in 1999 [3]. This new technology 

has been extensively used to find responses to  
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fundamental questions from understanding tumor 

biology, to prediction of progression, and treatments 

[1]. Cancer is a process driven by the accumulation of 

abnormalities in gene function which is initiated by 

genetic and epigenetic defects. Hence, the expression 

of genes and also tumor histology are ‘only’ the 

phenotypes reflecting the underlying (epi-)genetic 

alterations in the tumor. With the aim of improving 

molecular marker signatures in terms of cancer care 

and cancer biology one must therefore supplement 

expression signatures with (epi-) genetic information to 

link causal factors with downstream mechanisms of 

cancer genesis and progression. Moreover, ‘functional’ 

gene sets are expected to outperform purely ‘formal’ 

ones because they meet not only statistical but also 

biological criteria and thus an increased level of 

evidence (see below). 

The arrival of next generation sequencing 

technologies and also of new types of microarrays and 

their application to cancer now gives us access to this 

information in terms of the abundance of ten thousand 

of mRNA transcripts per sample, millions of mutations, 

methylation levels of hundred thousand of DNA CpG 

sites and of histone side chains. Besides genetic 

defects such as mutations and copy number 

alterations, genome-wide DNA methylation acts as an 

epigenetic factor that governs the particular activity 

state of the genome by assuring the proper regulation 

of gene expression and stable gene silencing [4]. DNA 

methylation is associated with histone modifications 

and the interplay of them is crucial to regulate the 
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functioning of the genome by changing chromatin 

architecture. Unlike genetic alterations, DNA 

methylation is heritable and reversible what makes it 

interesting for therapy approaches. Recent work shows 

that DNA methylation signatures are robust biomarkers 

which extend our ability to classify cancer and which 

predict outcome and therefore represent promising 

targets [5-10].  

Glioblastoma (GBM), the most common primary 

brain tumor, carries a universally dismal prognosis in 

children and adults. Affected patients have a uniformly 

poor prognosis with a median survival of about one 

year. Thus advances on all scientific and clinical fronts 

are needed. Moreover, the molecular foundations of 

lower-grade gliomas (LGGs, WHO grade II and III) 

remain less well characterized than those of their fully 

malignant grade IV GBM counterpart. Genome wide 

sequencing data show that about 50% of cases have at 

least one somatic mutation in a gene that is associated 

with the epigenetic machinery including DNA 

methylation, histone modifications and/or chromatin 

remodeling [11]. In an attempt to better understand 

gliomas, many groups have turned to high dimensional 

profiling studies based on genetic, transcriptional and 

DNA methylation markers [8, 12-21]. The mutual 

relation between the marker sets and their functional 

impact is not clear in many cases. 

The legitimate excitement about the attractiveness 

of molecular technologies should not overlook 

adherence to the rules of evidence [22]. A recent study 

showed that 60% of the published breast cancer 

outcome signatures were not significantly better 

outcome predictors than random signatures [23]. 

Moreover, statistical significance in a training cohort 

does not demonstrate a specific outcome association 

[22]. Hence, it is questionable to deduce a mechanism 

from statistically significant molecular markers solely 

because also random (false positive) markers can 

suggest this. Optimally, the statistical significance of 

markers should by supported by a sound and reliable 

interpretation in terms of their biological function. 

Indeed, it has been also shown that random signatures 

have only weak pathway enrichment and thus 

functional meaning, whereas non-random ones do 

have. Thus, a strong cancer-related functional context 

of marker signatures should make them more relevant 

and robust.  

We developed an innovative analysis pipeline for 

identifying marker genes from large scale genomic 

cancer data based on machine learning using self 

organizing maps (SOM) [24-26]. This method has been 

recently applied to classify a series of cancer entities 

into subtypes and to characterize them on molecular 

level using mainly gene expression data [25, 26]. It 

enables the ‘portrayal’ of molecular data landscapes, 

e.g. in terms of gene expression maps. These maps 

not only enable evaluation of data based on visual 

information. They also allow scientists to extract sets of 

marker genes with high resolution, to evaluate their 

functional impact and to compare them with alternative 

markers from independent studies [27]. Here we apply 

this method to DNA-methylation data of brain cancer 

taken from ref. [5] in order to extract sets of 

differentially methylated genes, to demonstrate their 

functional impact and to discuss their relevance in 

terms of glioma biology. We show that the intrinsic 

structure of this methylation data is compatible with a 

multitude of signature sets extracted from independent 

cohorts including DNA methylation and gene 

expression data thus reflecting their common biological 

background. We show that the specifics of biological 

functions of different glioma subtypes shape the 

content of these marker sets. In turn, including not only 

standard function information according, e.g. to 

different gene ontology (GO) terms but also about 

chromatin states of the healthy brain enables to study 

epigenetic mechanisms of glioma progression and the 

associated interplay between gene activity and 

methylation.  

2. DATA AND METHODS  

2.1. Methylation Data 

Microarray-derived DNA methylation data (Illumina 

HumanMethylation450 BeadChip) of 136 GBM and 6 

control samples were taken from ref. [5, 7] (available 

under GEO Series accession number GSE36278) in 

terms of the beta values of 485,512 CpG’s. The data 

refer to pediatric and adult GBM and to non-neoplastic 

cerebellum specimen as controls (Table 1). GBM 

samples were classified according to the methylation 

clusters identified in [5]. Accordingly, the pediatric GBM 

split into two subtypes carrying mutations of the H3F3A 

gene which affect two different amino acids of histone 

H3.3, namely G34 or K27, respectively. The adult GBM 

were classified into four subtypes labeled according to 

correlations with genetic defects. These genetic 

hallmarks constitute mutations of the IDH1 gene (‘IDH’ 

subtype) and focal copy number (CN) amplifications of 

the PDGFRA (‘RTKI’ subtype) or EGFR (‘RTKII’ 

subtype) gene both coding receptor tyrosine kinases 

(RTK). The RTKII cases are called ‘classical’ because 
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they enrich combined gain of CNs at chromosome 7 

and loss of CNs at chromosome 10 both representing a 

hallmark of IDH1 wild type GBM [5]. The 

‘mesenchymal’ subtype shows a lower incidence of 

GBM typical CN alterations. 

Methylation levels were estimated in a gene centric 

way by averaging the CpG-related beta values over 

genomic regions of the promoters of each gene ranging 

from 1500 bp upstream the transcription start site 

(TSS) to the TSS (Figure S1a). Beta values are defined 

as the relative methylation level which can vary 

between values of zero (no methylation) and unity (full 

methylation). For SOM analysis beta values were 

transformed into M values (Mgene= log10 [betagene/(1 – 

betagene)]) which theoretically cover the range between 

minus infinity (no methylation) to plus infinity (full 

methylation). M values are statistically more valid 

because they avoid heteroscedasticity of differential 

methylation values for large (beta>0.8) and small 

(beta<0.2) beta values [28]. In the intermediate beta 

range (0.2<beta<0.8) beta and M are nearly linearly 

correlated. For SOM analysis we used either M values 

(MetSOM) or centralized M values (DmetSOM), 

Mgene= Mgene - <Mgene>samples, where the angular 

brackets denote averaging over all samples studied. 

DmetSOM attenuates methylation changes 

independent of the methylation level whereas MetSOM 

directly considers absolute methylation levels and thus 

enables to distinguish highly methylated from weakly 

methylated genes. MetSOM has the advantage to 

resolve modules of co-methylated genes in more detail 

with higher granularity [29]. 

2.2. Gene Expression Data 

Three expression data sets were used to establish 

associations with methylation data (see Table 2). 

Microarray expression data of 30 matched samples 

and 3 unmatched fetal controls were taken from [5]. 

They comprise the same subtypes as the methylation 

data. A second set of expression data was taken from 

[31] and processed and analyzed previously by us [26]. 

This data comprises healthy brain, mesenchymal, 

Table 1: DNA Methylation Data Set (Sturm et al. [5]) 

subtype n  genetic hallmark
1
 expression subtype

2
 

adult 2 control   

fetus 4 control   

MES(enchymal) 36 adult GBM  mesenchymal 

RTKII (classical) 22 adult GBM CDKN2A (CN loss), EGFR  
(CN amplification) 

classical  

RTKI (PDGFRA) 23 adult GBM PDGFRA (CN amplification)  

IDH 19 adult GBM IDH1 (mutation) proneural 

G34 18 pediatric GBM H3F3A/ G34 (mutation)  

K27 18 pediatric GBM H3F3A/ K27 (mutation)  

1
see, e.g., [30] for an overview. 

2
according to [31].  

Table 2: Gene Expression Data of GBM 

methylation classes Sturm et al. [5] 

matched samples 

Hopp et al. [31] 

matched classes 

Reifenberger et al. [20] 

matched classes 

adult  healthy (n=10) proneural IDH1 wt (n=14) 

fetal fetal (n=3)   

MES mesenchymal (5) mesenchymal (50) mesenchymal (21) 

RTKII RTKII (3) classical (32) classical (23) 

RTKI RTKI (6)   

IDH IDH (7) proneural (45) proneural IDH1 mut (12) 

G34 G43 (4)   

K27 K27 (5)   
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classical, proneural and neural GBM which were 

matched with the classes of the methylation data. The 

third data set was taken from [20]. It consists of GBM 

with mesenchymal, classical, proneural with IDH1/2-

mutational and proneural with IDH1/2-wild type 

characteristics. 

2.3. Methylation Portrayal Using Self Organizing 
Maps 

Gene-centric methylation data were clustered using 

self-organizing map (SOM) machine learning. Only 

genes on autosomes were considered to avoid gender 

specific effects [32]. The SOM method translates the 

gene data matrix into metagene data of reduced 

dimensionality [32]. Each metagene data is visualized 

in a sample-specific fashion by arranging the 

metagenes in a two-dimensional quadratic 40x40 grid 

and by appropriately color coding of the data values. 

The mosaic images obtained serve as fingerprint 

portraits of the methylation landscapes of each sample. 

Class-specific mean portraits were generated by 

averaging the metagene landscapes of all cases 

belonging to one class. SOM size and topology was 

chosen to allow robust identification of methylation 

modules inherent in the data in terms of so-called spot 

clusters as described in our previous publications [24, 

27]. Overview spot maps were generated by collecting 

all hypermethylation spots of individual portraits into 

one map. Two different SOMs were trained using (i) 

methylation M-values (MetSOM) and (ii) centralized M-

values with respect to the mean M of a gene averaged 

over all samples (DmetSOM). Expression data were 

analyzed previously by means of SOM portrayal [20, 

26]. For SOM analyses we used the R-package 

‘oposSOM’ which is publically available from the 

Bioconductor repository [33]. 

2.4. Marker Set Selection Using Spot Modules  

The SOM algorithm arranges similar meta-profiles 

referring to the same dimension of variation together 

into neighbored pixels of the map whereas more 

different ones referring, e.g. to mutually independent 

dimensions are located at more distant positions. In 

consequence, neighbored meta-features tend to be 

colored similarly in each image which shows typically a 

smooth blurry texture with red and blue spot-like 

regions representing clusters of high and low meta-

feature values, respectively. Meta-features from the 

same spot can be assumed to be co-regulated (i.e. 

associated in a functional sense) owing to their similar 

profiles whereas different, well-separated spots 

potentially collect meta-data of different regulatory 

modes. The spot modules detected can be seen as a 

natural choice to identify context-dependent patterns in 

complex data sets. 

Spot clusters were determined using a 

hypermethylation percentile threshold applied either to 

the class-averaged or individual portraits (DmetSOM), 

or, alternatively a correlation threshold applied to the 

metagene profiles (MetSOM) [24, 27]. Significance of 

differential methylation of genes included in the spot 

clusters was estimated using a shrinked t-test and false 

discovery rate based multitest adjustment [24, 27] and 

a multitest adjusted correlation q
2
 test as described in 

[34]. 

2.5. Gene Set Functional Analysis 

For the interpretation of the functional context of 

spot modules we applied gene set enrichment analysis 

using the gene set enrichment score (GSZ) [35] or 

simply calculating mean methylation or expression 

values averaged over the genes of the set. The GSZ 

estimates the degree of reliability that a gene set with 

reference to a certain biological functionality is related 

to a list of genes with unknown functional impact, e.g., 

derived from the spot modules. Note that the GSZ-

score combines enrichment measures (i.e. the 

probability that more genes of the set are included in 

the list as expected by chance) with differential 

methylation (i.e. the difference of mean methylation 

between the set and the list) [27]. GSZ analysis was 

applied also to the full number of genes under study. 

Then it estimates the degree of conformance of the 

methylation of the genes of the selected set in a 

selected sample. High and low GSZ values usually 

beyond |GSZ|>5 reflect concerted hyper-

/hypomethylation of the set. GSZ-profiles of all samples 

studied are complemented by gene set maps which 

visualize the distribution of genes in the methylation 

landscape. Their strong accumulation in the spot areas 

reflects functional impact of the selected set on glioma 

biology whereas a virtually random spread suggests 

the lack of biological importance at least in the sample 

cohort used to train the SOM. 

We considered a large collection of gene sets 

related to biological process (BP), cellular components 

(CC) or molecular component (MC) taken from the 

gene ontology classification (GO), standard literature 

sets taken from the GSEA-repository (see [27] and 

[36]) together with literature sets related to glioma 

biology implemented by us (see below). For estimating 
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the association of DNA-methylation with chromatin 

states of healthy brain we used lists of genes referring 

to these states in mid frontal lobe of adult persons 

taken from the epigenetic roadmap repository 

(http://www.roadmapepigenomics.org/). In total fifteen 

states were considered including active, poised and 

silent promoters and enhancers, heterochromatin and 

repetitive elements. These states were derived from 

combinations of histone marks detected in the 

respective genetic regions using a hidden Markov 

model [37, 38]. 

2.6. Diversity Analysis 

Further downstream analysis comprises diversity 

analysis by means of (sample-) pairwise correlation 

heatmaps and their visualization using a correlation net 

presentation to extract the mutual similarity relations 

between the samples (see, e.g., [25, 26]).  

For a quantitative estimation of sample clustering 

we make use of the silhouette score, si = rx –  

max{rx  | x  x} of sample i (belonging to subtype x). It is 

defined as the difference between the intra-class and 

the best inter-class similarity measures, rx (x=1…X 

assign the classes) and rx’, respectively. As similarity 

measures we use the Pearson correlation coefficient 

between the metagene methylation landscapes of the 

SOM portraits of the sample selected and the 

respective class mean. The silhouette score is positive 

for samples which best fit into the cluster still chosen 

whereas the score is negative for samples which better 

fit to other clusters. The scores were ranked within 

each class and visualized as ‘silhouette plot’ together 

with the cluster of minimum distance for negative 

scores using a color bar (see below). All downstream 

methods were described in [24, 27], illustrated in a pilot 

application [26] and implemented in ‘oposSOM’ [33]. 

3. RESULTS 

3.1. SOM Portrayal of the Methylation Landscapes 
in GBM and Healthy Brain 

We re-analyzed microarray DNA methylation data 

published in a previous study on pediatric and adult 

brain tumors and non-neoplastic controls [5] to get 

detailed insight into the methylation landscapes of 

gliomas and their impact for molecular mechanisms of 

cancer diversity, genesis and progression. On the 

average, CpG-related beta value reveal a smoothly 

decaying methylation level upstream of the 

transcription start site (TSS) of the genes and relatively 

noisy methylation in their first exon (Figure S1a). We 

averaged CpG-related beta values over the range from 

-1500 bp to 0 bp with respect to the TSS of each gene 

to obtain mean gene centric data characterizing the 

DNA methylation level in the promoter region of each 

gene. The frequency distribution of gene centric beta 

values shows a typical bimodal shape with maxima 

near zero (completely de-methylated CpG sites) and 

unity (completely methylated CpG sites, see Figure 

S1b). The distribution of the IDH-subtype clearly 

reveals a trend towards global hypermethylation: The 

fraction of weakly methylated genes decreases while 

the fraction of highly methylated genes increases 

compared with the distributions in the healthy controls. 

On the other hand the distribution of the G34-subtype 

shows the opposite effect and thus a trend towards 

global hypomethylation (see the arrows in Figure S1b). 

In the next step, SOM data portrayal was applied to 

the gene-centric methylation data including all glioma 

samples and the non-neoplastic brain samples serving 

as reference. The method ‘projects’ the methylation 

data onto a two-dimensional grid of 40x40 pixels. 

Appropriate color-coding then visualized the 

methylation landscapes of each sample in terms of its 

individual methylation portrait (not shown). We 

averaged theses portraits taking into accounts all 

samples of each class to identify class-specific 

methylation signatures. Figure 1a shows the gallery of 

these mean portraits for all classes studied. Red and 

blue regions in the images refer to genes with high and 

low methylation levels of the probed CpG regions, 

respectively. Hence, the map can be segmented into 

regions containing genes of high and low methylation 

levels of their promoters and in regions containing 

genes with strongly variant and almost invariant 

methylation levels (Figure 1b). The regions of variant 

and of invariant genes thus include regions of high and 

low mean methylation levels as well. 

The SOM algorithm clusters genes with similar 

methylation profiles among the samples together into 

the spot-like areas appearing in the methylation maps. 

Accordingly, groups of genes with characteristic 

methylation profiles can be extracted from the map 

using a correlation metrics (Figure 1c). Accordingly, the 

methylation landscape divides into regions of hyper- 

and hypomethylated genes in almost all samples and in 

regions showing differential methylation effects 

between them as indicated in the figure. We calculated 

the mean methylation level and its variance separately 

for each subtype using the individual methylation 

portraits (Figure 1d). One sees that IDH, RTKII and, to 

a less degree mesenchymal tumors are globally 
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hypermethylated with respect to the controls whereas 

G34, K27 and RTKI are globally hypomethylated. The 

variance of the methylation level reflects the 

coarseness of the methylation landscapes of the 

subtypes. The decreased variance in gliomas 

compared with the controls reflects smoother 

landscapes in the tumors with more balanced 

methylation levels between the genes on the average.  

In summary, methylation changes in gliomas 

comprise both, hyper- and hypomethylation in a 

subtype specific fashion. SOM mapping identifies 

genes with different methylation levels and specific 

alterations of the methylation levels between the 

subtypes. 

3.2. SOM Portrayal of Centralized Methylation Data 
Improves Resolution (DmetSOM)  

In the next step we trained a second SOM using 

centralized methylation values (DmetSOM) where the 

mean methylation level of each gene averaged over all 

samples was subtracted from its actual methylation M-

value. Centralization focuses the view on methylation 

changes between the samples independent of the 

absolute methylation level of the genes and it improves 

 

Figure 1: SOM (MetSOM) portrayal of the methylation landscapes of glioma subtypes: a) SOM portraits of glioma subtypes and 
of healthy controls. Red and blue colors assign regions containing genes with high and low methylation levels, respectively. b) 
The methylation overview map visualizes regions of high (red) and low (blue) methylation levels. The methylation variance map 
identifies regions of genes showing highly variable (red) and almost invariant (blue) methylation. c) Selected regions of the map 
show different methylation profiles among the samples. d) Mean methylation level and variance of the classes studied. 
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Figure 2: SOM portrayal of centralized methylation data (DmetSOM): a) SOM portraits of the GBM subtypes and of the controls 
and similarity net of the samples studied. Samples with strong mutual correlation coefficients are connected by lines. The sample 
classes can be divided into three main groups as indicated. b) The pairwise correlation heatmap visualizes the mutual correlation 
coefficient for all pairwise combinations of samples. c) The silhouette plot estimates the quality of classification of samples into 
methylation subtypes. Negative values indicate preference for other subtypes which are assigned as color bar below. 

resolution with respect to differential markers that 

distinguish the different classes [29]. The class-

averaged mean DmetSOM portraits shown in Figure 2a 

are clearly more diverse then the respective MetSOM 

portraits shown in Figure 1a. One clearly identifies 

similar textures of the maps of non-neoplastic brain 

(adult and fetal) and mesenchymal GBM and of K27 

and RTKI GBM, respectively. The similarity net in 

Figure 2a more clearly visualizes the mutual similarities 

of individual methylation landscapes of the samples 

based on the mutual (Pearsons) correlation coefficients 

between them which were color-coded in the heatmap 

in Figure 2b. The classes can be roughly grouped into 

three superclusters which we assign as ‘brain-like’ 

because of the only small and moderate methylation 

changes in GBM; as (hyper-) Glioma CpG methylator 

phenotype (GCIMP) and as hypomethylator phenotype 

(CHOP) based on the global methylation drifts in GBM 

as suggested before in [5]. The brain-like and CHOP 

(and partly also GCIMP) groups show mainly anti-

correlated methylation landscapes meaning that large 

groups of genes concertedly ‘switch’ their methylation 



134     Journal of Cancer Research Updates, 2015, Vol. 4, No. 4 Hopp et al. 

levels between these groups (see the blue off-diagonal 

areas in Figure 2b).  

Note that each class forms its own cloud of samples 

in the similarity net which still reflects its own specifics 

within each of the supercluster (see below). On the 

other hand, one observes a certain degree of fuzziness 

between the subtypes. For example, the K27 and RTKI 

sample clouds partly overlap. In the supplement we 

provide the individual sample portraits sorted for each 

GBM subtype using hierarchical clustering trees 

(Figure S2). Part of the samples shows methylation 

landscapes which can be interpreted as mixtures of 

different subtypes (e.g. of K27, RTKI and G34) or as 

mixtures with healthy brain methylation characteristics 

(part of the mesenchymal and RTKII samples). The 

‘personalized’ portrayal of the samples enables the 

detailed assignment of these mixed characteristics.  

The silhouette plot in Figure 2c evaluates the 

robustness of class assignment for all samples. It 

reveals that the IDH, G34, RTKII, partly K27 and the 

controls form relatively robust classes whereas 

mesenchymal and especially RTKI are rather 

unambiguously assigned mainly due to overlapping 

characteristics with non-neoplastic fetal brain and G34 

GBM, respectively (see the color bar in Figure 2c which 

annotates the ‘best class membership’). Note that our 

robustness analysis is based on gene-centric whole-

genome methylation landscapes and thus it does not 

contradict the classification proposed in [5] which is 

based on the 8,000 most variant CpG probes. Our 

robustness analysis however illustrates the degree of 

fuzziness of class assignment which reflects the mutual 

overlap between them and possibly also common 

biological factors that drive tumorigenesis. We also 

performed independent component analysis (ICA) to 

estimate the similarity relations between the samples 

using an alternative method (Figure S3): Especially 

IDH and G34 systematic deviate in their methylation 

characteristics whereas the other subtypes are 

obviously more closely related each to each other. 

3.3. Segmentation of the Map into Spot-Sets of 
Methylation Markers and their Functional Context 

The summary map in Figure 3a colors regions 

hypermethylated in any of the subtypes in red. After 

appropriate segmentation (see methods section) we 

identified twelve spot-clusters containing between 

nearly two-thousand and sixty single genes. Six of 

these spot regions labelled A – F show profiles with 

subtype-specific differential methylation whereas six 

additional ‘satellite’ spots reveal more complex profiles 

(Figure 3b). For example, the methylation profiles of 

GBM in spots D and D1 are almost similar whereas 

methylation of the controls completely changes sign. 

The methylation profiles of the genes in most of the 

spots are highly correlated providing significance levels 

beyond p<10
-64

 using a q
2
-test statistics [34, 39]. Note 

that all spots except E1 and partly B1 are found in 

regions of highly variable methylation values (Figure 

S4). To estimate the absolute methylation levels of the 

genes in each of the spots we map them into the 

MetSOM (Figure S5). In general one sees that 

hypermethylation in G34 means that weakly methylated 

genes in healthy brain accumulate methylation marks 

whereas in IDH also genes with intermediate M values 

are affected. Importantly, two of the satellite spots of 

less variant genes refer to high (spot B1) or low (E1) 

methylation levels in all system studied. In the following 

we will focus on the main spots and the latter two 

satellite spots. 

DmetSOM analysis is based on centralized M 

values to increase sensitivity to methylation changes 

relative to the mean M value of each gene. In general 

one however asks for cancer specific methylation 

changes relative to the healthy controls. We therefore 

analyzed difference SOM with respect to the mean 

methylation map of non-neoplastic brain tissue of 

adults. The differential methylation landscapes support 

the superclusters of brain-like, GCIMP and CHOP-like 

methylation patterns (Figure S6). Moreover, one sees 

that spot A1 is hypomethylated and spot D1 

hypermethylated in all GBM compared with the healthy 

brain.  

Extended spot statistics reveals that spots C, E and 

F are highly sensitive and specific as hypermethylation 

markers for the IDH, G34 and RTKII subtypes, 

respectively (Figure 3c). The respective areas of the 

map thus can be interpreted as fingerprint regions as 

indicated in Figure 3a. The spot number distributions 

for each of the subtypes show that most of the samples 

of all classes show only one or two spots (Figure 3d). 

However, part of the GBM samples and especially that 

of the MES- and RTK I- subtypes can express up to 

five spots in parallel this way reflecting the high degree 

of fuzziness of these classes on feature level. 

Gene set enrichment analysis provides first ideas 

about the functional context of the genes in the spot 

modules (Table 3). Spots D and E are associated with 

biological processes already found in gene expression 

analysis on GBM [26] such as immune response and 
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Figure 3: Segmentation of the DmetSOM into spot modules of co-methylated genes: a) The hypermethylation summary map 
indicates regions hypermethylated in any of the classes compared with any other one in red. Each of the ‘spot’ regions is labeled 
as indicated. Segmentation of the map provides defined spot regions. Their color codes the q

2
 significance score which is 

minimal for cluster E1. b) The methylation spot profiles reveal unique over- or under-methylation of selected classes for the six 
main spots labeled by capital letters. Six satellite spots show more subtle profiles compared with the respective main spots. Lists 
of genes in each spot are provided as Table S1. c) The spot statistics assigns the fraction of samples of each class that shows 
one of the main spots. A bar length of unity for one subtype means that all samples show this spot. Spots C, E and F are 
sensitive (nearly each sample of the respective subtype shows this spot) and specific (virtually no other subtypes show this spot) 
for the IDH, G34 and RTK II subtypes, respectively. d) The spot number distributions show that the controls express exclusively 
one spot. Also most of the GBM samples in each subtype show only one spot. However, also GBM samples with three and even 
five spots (MES subtype) exist reflecting the increased heterogeneity of their methylation landscapes. 
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Table 3: Sets of Methylation Marker Genes and their Functional Context 

Spot UP DN Functional context: enriched gene sets
1
 top 10 genes

2
 

A MES  olfactory receptor activity (MF); G-protein coupled receptor 
signaling pathway (BP), neurological systems process (BP), colon 

cancer: CIMP_methylation_DN, CIMP_expression_UP [32] 

ANGPTL1, BCAN, 
APOC1, TUT1, FADS1, 

OR4C46, OR11H6, 
CDH19, GDF5OS, LAMA4 

B  G34 extracellular region (CC); keratin filament (CC); colon cancer: 
CIMP_methylation_DN [32] 

PRR33, VIP, FGF17, 
EMB, USP44, 

CCR7, HOXB1, LHX5, 
PRKCD, C1orf64 

C IDH  hallmark epithelial mesenchymal transition (cancer), 

GCIMP_signature genes: silenced_by_methylation [8]; colon 
cancer CIMP_methylation_UP [32]; 

Christensen_methylated_in_LGG [18]; 
Benporath_H3K27me3_inES [43]; Meissner_brain_HCP_with-

H3K4me3_and_H3K27me3 [44], 
Verhaak_classical_expression_UP [26], brain development (BP) 

MT3, SPATA6L, 

OSBPL1A, TCEA2, 
MEOX2, ZNF3, L3MBTL4, 

KIAA0101, TMEM106A, 
PLLP 

D controls MES immune response (BP), cytokine mediated signaling pathway 
(BP),  

TLR4, RTN4, NR2F2, VIM, 

TMEM140, NMI, 

PAXIP1 AS2, DHRS4, 
CISD2, TM4SF18,  

E G34  EED-targets, SUZ12-targets, PRC2-targets, H3K27me3 [43]; 

RNA-PolI_opening (reactome); meiosis and telomere 
maintenance (reactome) 

INHBB, MORN3, PCDH10, 

FGGY, LMCD1, DPYSL3, 
RASD1, MANF, IGFBP7, 

NAB2 

F RTKII  EED-targets, SUZ12-targets, PRC2-targets, H3K27me3 [43]; 

H3K27me3 in HCP [41]; Brain HCP with H3K27me3, with 
H3K4me3 and H3K27me3 [44], develompmental regulators [45] 

PCDHAC1, ZSCAN1, 

GALNT9, ROBO2, 
CEP126, POPDC3, EXO5, 
GRIN3A, HSPA1L, KCNB2 

A1 controls, MES G34 Olfactory receptor activity (MF), neurological system process (BP), 
keratinization (BP) 

RPRD2, DPP10, OR51B4, 
OR8J3, ACSM1, OR6Y1, 

SPTA1, STX3, CYB5R2, 
FBLIM1 

B1 high methylation Hallmark bile acid metabolism, Sensory perception of taste (BP), 
cell-cell junction (CC) 

ANKRD7, COX7A2, 

RGS21, LINC01588, 
KRTAP21 3. RNASEH2C, 

C5 SLC13A4, HRH4, 
NUPR1L 

C1 IDH G34 SUZ 12 targets, PRC2 targets [43] PTGER4, PAX7, ACVR1C, 
OTX1, TTI2, TMEM61, 

IRX4, SPIN1, 

MOXD1, SLC6A5 

C2 G34 control, 
MES, K27 

Cell adhesion (BP), calcium ion binding (MF), EED targets, PRC2 
targets, Suz12 targets [43], ES_WITH_H3K27ME3 [44] 

HOXC9, FMN1, ATP8B1, 

ST6GAL1, EVX2, SFTA3, 
TBX5, GJA3, GAD2, PAX5 

D1 IDH control , 
MES 

Nervous system development (BP), hemophilic cell adhesion 
(BP), LINDVALL_IMMORTALIZED_BY_TERT_UP 

PAX6, FOXB2, VSX1, 

MKX, COBL, MTA3, 

PDGFA, ST8SIA4, 
SH3BP4, C9orf135 

E1 low methylation KIM_myc-targets [46] EPM2AIP1, ZNF300, 

KCNH6, SLC35G1, 
ZNF580, AUNIP, TSHZ3, 

ZNF311, MIB1, DLL3 

1
enrichment of predefined gene sets in the spot-lists of genes was calculated as described in [27]. Gene sets were taken from literature or from gene ontology (GO) 

categories biological process (BP) or cellular component (CC). Only gene sets with GSZ-enrichment p< 10
-5

 were taken into account. 
2
Genes are ranked with decreasing correlation coefficient with the spot profile. Full gene lists together with significance measures (p-values of correlation and 

differential t-tests and false discovery rates) were given in Table S1. The lists contain also genes not included in the functional gene sets. 

meiosis, respectively. For example, hypomethylation of 

genes from spot D in MES GBM is related to immune 

response. It associates with high expression levels of 

immune response genes in MES GBM [26] suggesting 

anticorrelation between DNA methylation and 

expression. Spots C and E are hypermethylated in IDH 
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and G34 GBM, respectively. They enrich genes 

supporting the formation of the polycomb repressive 

complex (PRC2) and also functionally related genes 

such as EED and SUZ12 targets which control cellular 

development and differentiation [40]. These processes 

correlate with repressive and poised chromatin states 

defined by H3K27me3 and/or H3K4me3 histone marks 

in brain tissue and stem cells [41, 42]. Sets of affected 

genes consequently enrich in these spots C and E, as 

expected. We also find marker gene sets studied in 

previous DNA methylation and gene expression studies 

of GBM: For example, methylation markers for GBM of 

the GCIMP type [8] strongly enrich in the IDH 

hypermethylation spot C. Interestingly, genes from 

these spots are hypermethylated also in other cancers 

such as colorectal cancer (CIMP-type CRC) and B-cell 

lymphoma (Table 3). 

In summary, spot-segmentation of the SOM of 

centralized methylation data provides sets of marker 

genes which are specifically regulated in different 

glioma subtypes and which are well characterized in 

terms of previous knowledge. In the following 

subsections we will address the latter result more in 

detail. 

3.4. Mapping of Previous Sets of Glioma Markers 
Reveals High Redundancy and Mixtures of 
Subtypes in the Reference Cohorts 

Previous DNA methylation studies on gliomas have 

published sets of marker genes for different molecular 

and histological subtypes [6, 8, 13, 18, 47]. We 

mapped them into the DmetSOM for analysis in terms 

of gene set maps and profiles (Figure 4). The genes 

extracted in Noushmehr et al. [8] as ‘hypermethylated 

and deactivated in GCIMP’ indeed show clear 

hypermethylation in the GCIMP IDH subtype also in our 

data. However one also finds increased methylation of 

the G34 subtype suggesting a mixture of mainly IDH 

but also of G34 signature genes. Mapping of the genes 

of this set into the DmetSOM indeed reveals two 

regions of high local densities near the signature spot 

C (for IDH subtype) and E (for G34 subtype).  

Christensen et al. [18] published a series of 

signature genes determined as hypermethylated in 

different groups of low grade gliomas (LGG) relatively 

to healthy controls including different WHO gradings (II 

or III) and histological diagnoses (astrocytoma, 

oligodendroglioma, oligoastrocytoma). All our maps 

and profiles in Figure 4 except for one show mainly the 

IDH signature thus indicating a common methylation 

patterns in LGG independent of WHO grade and 

histological assignment. The only exception is the 

methylation signature of primary GBM which can be 

interpreted as a mixture of IDH and RTKII cases in the 

respective data. Other authors found the RTKII–

signature for GBM-hypermethylation (see the data of 

Martinez et al. [6] in Figure 4 and also [47]). Hence, the 

resulting ‘hypermethylation signature’ obviously 

strongly depends on the composition of the cohort used 

for extracting marker gene sets. This result agrees with 

the fact that the incidence of each of the three subtypes 

RTKII (classical), MES (mesenchymal) and IDH 

(proneural) in random adult GBM cohorts is roughly 

comparable [20, 31]. Without stratification into these 

subtypes one gets consequently a mixture of the 

respective signatures as observed. Note in this context 

that that the signature of the mesenchymal subtype is 

consistently observed as ‘hypomethylated’ in GBM in a 

series of gene sets taken from [13, 18] (Figure 4). 

Contrarily, the IDH (proneural) cases typically dominate 

with usually about 80% of all cases in LGGs [21]. The 

resulting signatures of different LGG strata are 

consequently close to that of the IDH subtype as 

observed. We will further discuss this point below in the 

context of expression signature genes. 

To estimate the similarity of different gene sets one 

usually counts the number of overlapping genes and 

represents them in terms of Venn diagrams. Note, 

however, that, for example, the gene set of Noushmehr 

et al. ‘hypermethylated in GBM’ overlaps with each of 

the ‘hypermethylated in LGG’ sets of Christensen et al. 

by only a few genes. The percentage of overlap refers 

to less than ten percent of the total number of genes in 

the Noushmehr et al. set. On first sight this result 

suggests the lack of similarity between these sets. Our 

analysis using gene set mapping however provides the 

opposite result. We clearly found similar enrichment 

profiles and enrichment maps of the different sets. It is 

an important benefit of our method to detect similarities 

between different marker sets even in the case of a 

small overlap between them. Such a small overlap 

between different but similar sets can be simply 

rationalized by the application of conservative 

significance thresholds in the selection algorithms for 

marker genes. High significance levels for differential 

expression in the original data however can neglect 

‘still affected’ and thus functionally related genes that 

can become significant in one but not in alternative 

studies. 

In summary, DNA-methylation signature genes from 

alternative studies of gliomas well agree with our spot 
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signatures. The IDH (proneuronal) methylation 

signature dominates in LGG largely independent of 

WHO grade and histological diagnosis. Especially in 

GBM the sets reflect mixtures of the subtypes which 

are present in the cohorts used for extraction of gene 

sets (typically IDH, classical and mesenchymal). SOM 

mapping of gene sets robustly identifies similarities 

between different gene sets even under conditions of 

noisy compositions. Our approach outperforms 

overlap-measures as often used in terms of Venn 

diagrams. 

3.5. Marker Sets of B-Cell Lymphomas and 
Colorectal Cancer Differentiate also between 
Glioma Classes 

We previously found that GCIMP marker genes 

from glioma studies also differentiate between 

subtypes of B-cell lymphoma representing a completely 

different cancer entity [29]. Vice versa, DNA 

methylation gene sets from previous studies for B cell 

lymphoma [29] and for colon cancer [32] enrich also in 

selected spots of the DmetSOM of gliomas studied 

here (Table 3). These results motivated us to analyze 

these sets more in detail using gene set maps and 

profiles as described in the previous subsection (see 

Figure S7). Genes, hypermethylated in the CIMP-high 

subtype in CRC and also genes hypermethylated in 

diffuse large B cell lymphoma (DLBCL) accumulate in 

spots F and C thus revealing mixed characteristics of 

the RTKII and IDH subtypes in gliomas. This 

agreement between different cancers also extends to 

spots A and B which accumulate genes 

hypomethylated in G34 gliomas, CRC and also DLBCL 

compared with Burkitt’s lymphoma, another subtype of 

B cell lymphoma. Hence, the IDH and RTKII subtypes 

of GBM share similarities with the hyper-methylator 

phenotypes in CRC and lymphoma. On the other hand 

the G34 subtype resembles the respective 

hypomethylator subtypes in lymphoma and CRC. 

 

Figure 4: Mapping of methylation marker gene sets for gliomas taken from refs. [6, 8, 13, 18, 47]: The gene set maps show the 
distribution of marker genes in the DmetSOM. The genes accumulate in different spot areas as indicated by the red dashed 
frames. The GSZ profiles reveal subtype specific methylation effects. Nearly all sets collecting hypermethylation markers genes 
show an IDH_UP-signature which partly mixes with the RTKII_UP signature. Sets with very similar signatures are listed without 
showing the data.  
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These striking agreements suggest general 

mechanisms of aberrant DNA methylation in different 

cancer entities. 

3.6. Gene Expression and Promoter Methylation 
Change Mostly in Anti-Concert 

In the next step we analyzed the association 

between gene expression and DNA methylation of the 

spot genes using matched samples taken from [5] and 

also independent expression data [20, 26] for which we 

matched the classes with the methylation data studied 

here (see Figure 5a and Table 2). The 

hypermethylation spots of the MES (spot A), IDH (C) 

and RTKII (F) subtypes consistently reveal strong anti-

correlation between promoter methylation and gene 

expression in all three analyses. The same result was 

obtained for the G34 subtype in the matched sample 

data. The independent GBM expression data do not 

 

Figure 5: Correlation between DNA methylation and gene expression: a) Correlation plots between matched DNA methylation 
and gene expression data of the spot genes reveal preferentially anti-correlated changes as indicated by the red dotted lines 
which serve as a guide for the eye. We used matched samples where methylation and expression data are known for the same 
samples taken from [5] and also matched classes taken from [20] and [26] where the data refer to different samples. The 
matching rules for the classes are given within the figure. Each full circle provides the mean values for one subtype. The error 
bars in abscissa and oordinate direction indicate the variance of methylation and expression data for each subtype, respectively. 
b) Gene expression profiles of the methylation spot sets in the GBM expression data analyzed in [26]: Hypermethylation sets 
(MES_UP, IDH_UP, RTKII_UP) associate with underexpression in the respective subtype as indicated by the arrows. Note that 
the color code for the GBM subtypes was chosen from the original papers [20, 26]. 
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show this effect because they do not contain pediatric 

cases. For other spots one observes the absence of 

systematic expression changes despite marked 

methylation effects (spot C2), positive correlations (B) 

and also neither marked expression nor methylation 

effects for the hyper- and hypomethylation spots B1 

and E1, respectively (data not shown). 

In Figure 5b we explicitly show the expression 

profiles of the genes from selected methylation spot 

sets in the Verhaak-reference data set as analyzed in 

[26]. One clearly sees that hypermethylation of the 

promoters of the selected genes in a selected subtype 

accompanies strong downregulation of gene 

expression of these genes. Importantly, the expression 

profiles respond in a subtype-specific fashion. This 

result reflects the important fact that the methylation 

classes show also class-specific expression effects and 

thus a close mutual relation between gene expression 

and DNA methylation.  

To further proof this relation we mapped gene 

expression marker sets for LGGs (WHO grade II and 

III) and GBM (grade IV) into the DmetSOM to estimate 

their DNA methylation status (Figure S8). In general, 

we found strong subtype-specific effects thus 

confirming the close relation between expression and 

methylation. For example, LGGs with a co-deletion on 

chromosomes 1 and 19 as a hallmark of 

oligodendroglioma show the RTKII hypermethylation 

signature (Figure S8a). Grade II and III LGGs differ in 

the methylation level of RTKII and IDH signature genes 

on one hand and of G34 signature genes on the other 

hand. Hence, we again found a mixing between 

different methylation classes in the subcohorts 

selected. The expression classes proposed by 

Gorovets et al. [19] for LGGs can be assigned to a 

brain-like_UP methylation signature (neuroblastic 

LGG), a mixed RTKII and IDH signature (early 

progenitor LGGs) and an IDH_UP signature (pre-

glioblastoma, PG; see Figure S8a). Note that genes 

hypermethylated in IDH tumors (IDH_UP) are on low 

expression level in IDH1 mutated tumors but on high 

level in IDH1 wild type tumors such as PG. Hence, 

hypermethylation signatures of IDH1 mutated tumors 

correspond to overexpression signatures of IDH1 wild 

type tumors and vice versa due to the anti-correlation 

between expression and methylation effects.  

This anti-concerted assignment of methylation and 

expression signatures is evident also in the expression 

signatures of GBM (Figure S8b): Genes, 

overexpressed in IDH1 wild type tumors of the 

mesenchymal and/or classical subtypes are mostly 

hypermethylated in IDH1 mutated,-proneural tumors. A 

sketchy use of terms like ‘IDH_UP-signature’ can imply 

incorrect associations because ‘over’-methylation in the 

IDH subtype associates with ‘over’-expression of 

another one, namely in IDH1 wild type mesenchymal 

and/or classical subtypes.  

Please note also, that deactivation of gene 

expression by DNA methylation of gene promoters 

represents only one possible mechanism how DNA 

methylation affects transcription. Alternative 

mechanisms are discussed which, for example, explain 

also correlated changes between gene expression and 

DNA methylation. For example, a methylated DNA 

sequence motif can take on a new function by creating 

a novel DNA binding site for transcriptional activators 

that could not be predicted from sequence information 

alone. Such mechanisms expand the functional role of 

DNA methylation in gene regulation, being capable to 

regulate active and repressive gene states in a site-

specific manner [48].  

3.7. Methylation of Glioma Subtypes Associates 
with Cellular Programs and their (de-)Activation by 
Chromatin Remodeling 

Functional analysis of the spot lists of genes 

revealed specific functional modes and states of gene 

activity which associate with the different sets of 

markers and thus also with the methylation subtype 

(Table 3). To study the biological context more in detail 

we generated one-way clustered heatmaps of gene 

sets referring to the GO-category ‘biological process’ 

(Figure 6a), to chromatin states of brain tissue (Figure 

6b), to regulators in poorly differentiated cells [43], to 

repressive, poised and active histone methylation 

states [41] (see Figure S9) and also special gene sets 

with notably profiles (Figure S10). 

Firstly, one finds two ‘limiting’ profiles characterized 

by (i) high methylation of the brain-like classes and low 

methylation of CHOP-like classes and (ii) by the 

respective antagonistic CHOP-like_UP/brain-like_DN 

profile. The former profile comprises functions like 

‘neurological systems process’, ‘immune response’ 

(Figure 6a), transcription factors (TF) associated with 

low expression levels in mammalian cells in general 

[49], fatty acid metabolism (Figure S10) and partly 

transcriptional active chromatin states (Figure 6b). 

These profiles are characterized by strong 

hypomethylation of G34, K27 and RTKI GBM 

compared with the other GBM subtypes and also 
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Figure 6: Methylation heatmap of genes referring to the GO term biological process (part a), and genes assigned to different 
chromatin states in healthy brain (mid frontal lobe) (part b). Colors maroon to blue indicate high to small methylation levels, 
respectively. Chromatin states were grouped into active ones (e.g. Tx, Txn, TSSA), inactive (ReprPC, Quies, TSSP) and 
closed/heterochromatin (Het, HetRpts, ZNF) roughly agreeing with the clustering of methylation patterns shown in the right part 
of the figure. 
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healthy brain. The second types of profiles (ii) are 

associated with high methylation levels of ‘cell cycle’ 

(Figure 6a), ribosomal, mitochondrial genes, high 

transcription TFs, hypoxia, DNA repair and ageing, 

partly EZH2 targets (Figure S10), MYC-, NOTCH- and 

SOX2-targtes (Figure S9a) and heterochromatin states 

(Figure 6b) in brain-like classes and low methylation in 

CHOP. These two groups (i) and (ii) of antagonistic 

DNA-methylation are mainly responsible for the two 

superclusters established in the similarity plots (Figure 

2a and b).  

Note that group (ii) associates with highly 

methylated genes that enrich in and near spot E1. 

Recall that high methylation levels correlate mostly with 

low gene activities. Hence, high transcription TFs are 

repressed by DNA methylation in group (ii) and packed 

into closed chromatin states whereas lower methylation 

levels associate with active chromatin states. The 

situation reverses in group (i) where low transcription 

TFs and active chromatin states become repressed by 

high methylation levels. 

In between these two ‘limiting’ states one finds a 

third type of profiles (iii) with uniquely high methylation 

in RTKII, IDH or G34 and also mixtures of them. These 

states enrich inactive chromatin states with repressed 

and/or poised promoters, developmental and tissue-

differentiation genes and targets of the polycomb 

repressive complex 2 (PRC2) and related genes: 

targets of EED, SUZ12 (Figure S9a) and EZH2, the 

catalytic subunit of a H3K27 methyltransferase (Figure 

S10). These results are supported by histone 

modification data which show that type (iii) profiles 

associate with repressive H3K27me3 and bivalent 

H3K27me3 and H3K4me3 marks (Figure S9b). These 

data also show that so-called high CpG promoters are 

mainly involved in repression of these genes whereas 

repressed low CpG promoters associate partly with 

type (i) brain-like_UP methylation profiles.  

Interestingly, G34 tumors associate with strong 

hypermethylation of genes related to promoter opening 

and telomere end packing (Figure S10). Pediatric GBM 

and especially G34 tumors show alternative 

lengthening of telomeres (ALT) mediated by homolo-

gous recombination and supported by mutations of the 

ATRX gene which mediate histone assembly in 

subtelomeric regions [30]. We found strong 

hypermethylation of genes coding histone clusters 1 

and partly also clusters 2 and 3 thus suggesting 

aberrant expression and in final consequence aberrant 

nucleosome assembly and aberrant telomere 

maintenance function.  

Hence, IDH, G34 and also RTKII are characterized 

by DNA methylation and thus transcriptional repression 

of genes which obviously suppress tumorigenesis in 

healthy brain. Hypermethalytion of PRC2 repressed 

targets and of poised promotors is a molecular 

hallmark of many cancer types [43] including B-cell 

lymphomas [7, 29] and colorectal cancer. This 

ubiquitous property partly explains the similar 

signatures of high CpG methylator phenotypes in 

gliomas, colon cancer and lymphomas. This agreement 

is further supported by overlapping chromatin states in 

the healthy tissues: Especially genes with poised 

promoter states (TSSP) agree to about 50% (of about 

3000 genes) between brain tissue and colon and brain 

and lymphoblastoid cells as well.  

These results show that methylation effects 

associate with different chromatin states which, in turn, 

enable different modes of gene activity in terms of 

transcriptional programs. Global hypermethylation of 

the brain-like and IDH subtypes and global 

hypomethylation of the CHOP-like subtypes associates 

with open chromatin states which are either 

transcriptional active in the RTKII and also 

mesenchymal subtypes or inactive in the IDH and 

partly RTKII and G34 subtypes. Methylation of closed 

chromatin counteracts the global net methylation 

tendencies, i.e. it is associated with reduced 

methylation in the brain-like and IDH subtypes and 

increased methylation in the CHOP-like subtypes. Note 

that the assignment of chromatin states is based on 

healthy brain data (mid frontal lobe) which presumably 

only partly can be applied to the diseased brain. 

Hence, methylation effects associate with changes of 

the chromatin states, for example if highly methylated 

nominal active promoter states transform into inactive 

ones or even into heterochromatin. 

4. DISCUSSION 

4.1. SOM Portrayal of Marker Sets Resolve 
Heterogeneity of DNA Methylation Across Glioma 
Subtypes, Cancer Entities and Different Cohorts 

Our study focused on DNA methylation data 

stratified with respect to molecular subtypes of adult 

and pediatric GBM and healthy brain controls. We 

applied SOM machine learning to the data, a powerful 

technique to ‘organize’ complex, multivariate data. 
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Using centralized methylation data we identified 

clusters of co-methylated genes among the samples 

studied which we call ‘spot-modules’ because of their 

spot-like appearance in the SOM-portraits. The 

DmetSOM disentangles genes systematically hyper- 

and hypomethylated in gliomas compared with healthy 

brain and it extracts systematic methylation differences 

between the glioma subtypes. SOM portrayal was 

shown to serve as an effective ‘sorting machine’ to 

extract different modes of DNA methylation in gliomas. 

To assign the functional meaning to the spot modules 

we applied enrichment analysis using a multitude of 

pre-defined gene sets related to categories such as 

biological function (e.g. inflammation, cell development 

and ageing), targets of different transcription factors 

(e.g. MYC, NANOG, high and low expression TFs) and 

epigenetic modulators (e.g. EED, SUZ12; PRC2, 

EZH2), different chromatin states in reference mid 

frontal lobe tissue, genes differently methylated in other 

cancers (e.g. CIMP in colorectal cancer and 

methylation subtypes of B-cell lymphoma) and also of 

marker gene sets for differential methylation and 

expression between glioma subtypes obtained in 

independent studies. 

Interestingly, we found pronounced subtype-specific 

methylation signatures of gene sets from different 

glioma studies which indicate a common scheme of 

aberrant gene regulation in LGGs and adult and 

pediatric GBM. The GCIMP signature is found across 

most of the glioma studies as a basal hallmark of IDH1-

mutated tumors. However, our analysis finds also 

mixed methylation signatures in many cases especially 

for histological classes which often represent mixtures 

of different molecular subtypes. Hence, methylation 

signatures enable the further ‘de-mixing’ of histological 

classes according to molecular variants. This result 

supports recent studies showing that DNA-based 

molecular profiling of gliomas distinguishes biologically 

distinct tumor groups and provides prognostically 

relevant information beyond histological classification 

[21]. On the other hand, molecular profiling is hardly 

suited for reliable distinction of tumor grades due to 

grade-independent mechanisms. 

We also found pronounced correlation between 

gene expression and methylation signatures of 

gliomas. It reflects coupled mechanisms of methylation 

and gene activity. Whether DNA methylation profiling 

provides a more robust and clinically useful platform for 

GBM subgrouping remains to be tested. The 

enrichment of DNA methylation signatures of other 

cancer entities in gliomas suggests general oncogenic 

methylation mechanisms. 

4.2. Methylation Marker Sets Reveal Molecular 
Mechanisms of Gliomas 

DNA methylation acts as an epigenetic modification 

in vertebrate DNA. It has become clear that the DNA 

and histone lysine methylation systems are highly 

interrelated and rely mechanistically on each other for 

normal chromatin function [50]. Controlling the timing 

and placement of DNA methylation in the genome is 

essential for normal cellular function and its dysfunction 

de-regulates cell activities. Figure 7 summarizes the 

main results of our study by relating methylation 

profiles, glioma subtypes, biological functions and 

chromatin states each to another.  

The global methylation profile, namely 

hypermethylation in brain-like and GCIMP tumors and 

hypomethylation in pediatric GBM and RTKI, 

associates with the biological processes immune 

response and fatty acid metabolism. This mode is 

counterbalanced by antagonistic methylation changes 

which can be assigned to cell cycle activity and energy 

metabolism. In healthy brain these modes accumulate 

genes from different chromatin states, namely 

transcribed states and silent heterochromatin, 

respectively. This result suggests that transcribed 

states in healthy brain become suppressed by DNA 

hyper-methylation in brain-like and GCIMP subtypes 

whereas silent heterochromatin becomes possibly 

activated due to hypomethylation of the affected genes 

in these tumors. In contrast, methylation levels in the 

CHOP-like pediatric GBM and RTKI correspond to the 

chromatin states assigned in the healthy brain. These 

results suggest chromatin remodeling between brain-

like and GCIMP on one hand and CHOP-like tumors on 

the other hand. In other words, global methylation 

effects seem to associate with a different chromatin 

organization in the methylation superclusters. 

These global changes were further modulated by a 

series of methylation effects which refer to only a few 

or even single subtypes and thus define their 

specificity. We found hypermethylation of genes 

normally activated in stem cells, combined with 

preferential repression of polycomb-regulated genes 

(PRC2-, EED- and SUZ12-targets) in RTKII, IDH and 

also G34 tumors. These genes are enriched in 

chromatin states assigned to repressed and bivalent 

promoters with H3K27me3 or H3K27me3 and 
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H3K4me3 marked histones, respectively. This 

methylation signature is generally found in poorly 

differentiated tumors [43] and, for example, also in B 

cell lymphoma [7, 29] indicating ‘suppression of tumor 

suppressors’ associated with tissue-specific cell 

differentiation [51, 41, 52]. Interestingly, targets of TFs 

involved in development and differentiation (OCT4, 

NANOG, SOX2) and also MYC are antagonistically 

methylated compared with the PRC2 targets thus 

suggesting different regulatory modes for more 

repressed and more active genes, respectively. A 

similar dualism was previously suggested in terms of 

high and low transcription TFs in metazoan which 

associate with high and low gene expression levels of 

their targets, respectively [49]. The split between both 

types of TFs was recently established also in 

lymphomas [29]. The high transcription TFs show 

generally a low DNA methylation level in the brain-like 

and GCIMP tumors. Contrarily, low transcription TFs 

are associated with high methylation levels reflecting 

the expected anticorrelated activation pattern between 

methylation and gene expression. In CHOP-like tumors 

this relation however reverses showing hypermethy-

lation of high expression TFs and hypomethylation of 

low expression TFs and thus apparently improper 

expression levels in these tumors which possibly 

reflects chromatin remodeling as discussed above. 

 

Figure 7: Overview scheme summarizing genomic hallmarks of adult and pediatric glioma subtypes and epigenetic 
mechanisms and regulatory modes of promotor methylation and gene activity extracted from our analysis. The functional 
context associates with the spot clusters of genes obtained from DmetSOM analysis. The chromatin states refer to healthy mid 
frontal lobe tissue. Their assignment to the regulatory modes suggests specific targets for DNA methylation: For example, 
transcribed states in healthy brain are prone to global hypermethylation in brain-like and GCIMP tumors and prone to global 
hypomethylation in CHOP-like states. The antagonistic mode of methylation affects mainly heterochromatin in healthy brain. 
Note that promoter methylation mostly anticorrelates with gene activity: e.g., energy metabolism becomes upregulated in brain-
like and GCIMP tumors compared with CHOP-like ones. Targets of the PRC2 complex and of its cofactors (EED and SUZ12) 
are hypermethylated and thus transcriptionally repressed in RTKII, IDH and G34 but activated in MES and K27 tumors by 
hypomethylation. 
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Also K27 tumors show enrichment of PRC2 target 

genes becoming however hypomethylated in terms of 

DNA methylation and low levels of repressive 

H3K27me3 histone marks as well. We conclude that 

these genes are transcriptionally more active in K27 

gliomas compared with the other subtypes in 

agreement with [53, 54]. Hence, the Lys27 mutation of 

H3.3 associates with the global reduction of repressive 

histone marks of the H3K27me3 type, activation of 

gene expression and DNA de-methylation. 

Aberrant hypermethylation in IDH tumors of the 

GCIMP type is induced mostly by the IDH1 mutation 

leading to inhibition of histone-lysine- and DNA de-

methylases carrying the Jumonji-domain via 

intermediate metabolites of the citrate cycle which act 

as their coenzymes [55]. In tumors of the RTK-types 

epigenetic dysregulation associates also with metabolic 

reprogramming, namely with aberrant activation of the 

pyruvate kinase M2 (PKM2) isoform, a glycolytic 

enzyme involved in ATP generation and pyruvate 

production which plays an essential role in tumor 

metabolism and growth. It also functions as a protein 

kinase that phosphorylates and/or acetylates histones 

during transcription and chromatin remodeling with 

consequences for CpG methylation [56]. RTKI tumors 

together with K27 and G34 show hypermethylation of 

genes related to pyruvate metabolism, ATP binding, 

mitochondrion and ribosome cellular components 

suggesting transcriptional down regulation of the 

energy metabolism and protein synthesis. Interestingly, 

targets of EZH2, a compound of PRC2 catalyzing the 

formation of H3K27me3, show similar methylation 

profiles which also resemble those of genes up-

regulated upon ageing and under hypoxia. Subtle 

differences between the methylation profiles ‘pyruvate 

metabolism’ and ‘ATP binding’/ ‘mitochondrion’ in IDH 

gliomas on one hand and G34 and RTKI on the other 

hand however suggest different mechanisms of 

metabolic control in these subtypes. 

G34 tumors show specific hypermethylation of 

genes associated with telomere length maintenance 

(Reactome sets ‘packaging of telomere lengths’ and 

‘pol I promoter opening’), histone assembly and DNA 

repair suggesting increased genomic instability of this 

subtype. G34 tumors display an ALT (alternative 

lengthening of telomeres) phenotype presumably 

mediated by homologous recombination and caused by 

the mutation of the ATRX gene and possibly also by 

the G34 mutation of H3.3 itself [5, 57]. Aberrant DNA 

repair functionality in G34 is possibly associated with 

DNA hypermethylation of the respective genes and 

aberrant methylation markings of H3K36me3 required 

for proper recruitment of the DNA-repair machinery [30, 

58, 59]. Interestingly we find also strong 

hypermethylation of genes referring to ribosome and 

mitochondrial functions in G34 suggesting a 

deactivation of transcriptional and energy-metabolic 

processes in this subtype.  

Taken together, these findings illustrate a 

widespread functional role of DNA methylation in gene 

regulation in gliomas essentially contributing to the 

heterogeneity of glioma subtypes and strongly affecting 

the underlying molecular mechanisms of cell function.  

5. CONCLUSIONS  

Sets of differential methylation genes in gliomas 

represent surrogate markers of molecular mechanisms 

governing (epi)genomic dysregulation. DNA 

methylation phenomena are complex ensuring complex 

tuning of gene function. Consideration of this regulatory 

level is inevitable for understanding cancer genesis and 

progression. It provides suited markers for diagnosis of 

glioma subtypes and disentangles tumor heterogeneity. 
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SUPPLEMENTARY MATERIAL 

 

 

Figure S1: Global beta methylation characteristics: a) Mean methylation level as a function of the genomic position relative to 
the transcription start side (TSS). CpG-beta values were averaged over all genes for each subtype (the colors were assigned in 
b); b) frequency distribution of beta values for the GBM subtypes and controls. The arrows serve as a guide for the eye to 
indicate methylation changes leading to global hyper- or hypomethylation in IDH- and G34-type GBM compared with healthy 
controls; and c) mutual correlations of beta values between the classes.  
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Figure S2: Hierarchical cluster trees of the sample SOM portraits for the GBM subtypes identify partial mixing between class 
characteristics.  
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Figure S3: Independent component analysis of methylation data: IDH and G34 separate along the first independent component 
(IC1), the superclusters ‘brain-like’ and CHOP (except G34) along the IC2 and partly IC3. 

 

 

Figure S4: Additional DmetSOM information: a) The variance map shows that spot E1 (in the left upper corner) lacks variability. 
b) The p-value significance map color codes minimum log p-values found in each pixel. Maroon areas are highly significant 
differently methylated. They agree with the positions of the main spots. p values are adjusted using a shrinkage t-test [1].  
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Figure S5: Mapping of the DmetSOM-spots into the MetSOM: All DmetSOM-spots accumulate in well limited areas indicating 
that DmetSOM and MetSOM are organized in a similar way. Some of the satellite spots indicate that they collect highly or weakly 
methylated genes (see also the legend in the right below part of the figure). Hence, differential methylation is obviously the main 
factor that organizes the genes. Nevertheless, absolute methylations levels slightly modulate the spot structure. 
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Figure S6: Differential methylation analysis with respect to adult healthy brain. a) The beta-correlation plot reveals global hyper- 
and hypomethylation for IDH and G34 GBM. However, a considerable number of genes shows the opposite trend in each of the 
subtypes. b) Difference MetSOM portraits (metagene-methylation data are subtractedpixelwise) show hypermethylation in GBM 
in the region of spots A1 and partly B and hypermethylation in GBM in the region of spots C, F and partly D. c) Difference 
DmetSOM portraits reveal global hyper- and hypomethylation in spots F and A1, respectively. 

 

 

Figure S7: Mapping of methylation-signature gene sets of B-cell lymphoma and of colorectal cancer into the DmetSOM of 
glioma. The gene sets were determined using SOM spot analysis in recent studies on DNA methylation data in [2] and [3], 
respectively. The red frames indicate regions of increased local densities of genes. The profiles indicate subtype specific hyper- 
(and hypomethylation) in glioma. List of gene are available from the authors upon request. 
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Figure S8: Mapping of gene expression marker sets for low (part a) and high (b) grade gliomas into the DmetSOM. Gene sets 
were taken from refs. [4, 5] (LGG) and [6, 7] (GBM). The profiles reveal subtype specific methylation patterns which mostly agree 
between LGGs and GBM. The mutational status of the IDH1 gene has strong effect of the profiles observed.  
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Figure S9: Enrichment heatmaps of gene sets referring to stemness-related genes including PRC2 and MYC targets (part a, [8]) 
and to chromatin states in pluripotent and committed cells (part b, [9]).  
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Figure S10: Selected gene set characteristics taken from different GO-terms, KEGG, Reactome and literature [10-13].  

 

Table S1: Lists of Genes Included in the Methylation Spot-Clusters A – F and A1 – E1 (Figure 3) 

The supplementary table can be downloaded from the link <Table S1>. 
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