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ABSTRACT 

Motivation: Comprehensive analysis of genome-wide molecular 

data challenges bioinformatics methodology in terms of intuitive 

visualization with single-sample resolution, biomarker selection, 

functional information mining and highly granular stratification of 

sample classes. oposSOM combines those functionalities making 

use of a comprehensive analysis and visualization strategy based 

on self-organizing maps (SOM) machine learning which we call 

‘high-dimensional data portraying’. The method was successfully 

applied in a series of studies using mostly transcriptome data but 

also data of other OMICs realms. oposSOM is now publicly available 

as Bioconductor R package. 

1 INTRODUCTION  

Bioinformatics tools are needed which allow to statistically, func-

tionally and visually summarise high-dimensional data such as 

transcriptome studies at different levels of resolution ranging from 

individual samples and genes to sample classes and expression 

modules of co-regulated genes. For this purpose, we developed a 

bioinformatics analysis pipeline based on self-organizing map 

(SOM) machine learning which facilitates a holistic view on this 

data (Wirth et al., 2011; Wirth, von Bergen, and Binder, 2012). We 

termed this technique ‘high-dimensional data portraying’. It sub-

sumes the visualization of the data landscape of each individual, a 

series of downstream bioinformatics and –statistics analysis op-

tions and the detailed and comprehensive reporting of the results. 

We have chosen SOM machine learning as backbone because it 

combines strong clustering, dimension reduction, multidimensional 

scaling and visualization capabilities which have been shown to be 

advantageous compared to alternative methods such as clustering 

heatmaps and negative matrix factorization when applied to mo-

lecular high-throughput data (see (Wirth et al., 2011) and refer-

ences cited therein). We complemented the basal SOM algorithm 

with a sophisticated data analysis workflow including visualization 

of the individual feature landscapes, statistical testing for differen-

tial features and biomarker selection, mining of biological func-

tion, and also sample diversity analysis to assess classes of sam-

ples. oposSOM continues and largely extends the scope of a previ-

ous SOM-based expression analysis tool, the ‘gene expression 

dynamic inspector’ (GEDI) (Eichler et al., 2003): oposSOM is 

under steady development, provides a multitude of sample diversi-

ty analyses and, most importantly, provides comprehensive func-

tional annotations. 

  
*To whom correspondence should be addressed.  

Our portraying-method has been developed in first instance for 

gene expression data comprising from tens up to thousands of 

samples (e.g. tumour specimen in patient cohorts, experimental 

conditions in cell line experiments). The portraying functionality is 

unique and suited especially for scientists who attach importance 

to visual control and intuitive perception of complex data. The 

software was applied in a series of previous studies aiming at 

discovering the gene expression landscapes of healthy human 

tissues (Wirth et al., 2011), of cancer subtypes (Hopp, Wirth, et al., 

2013; Hopp, Lembcke, et al., 2013; Reifenberger et al., 2014) and 

of stem cell development (Charbord et al., 2014). Further applica-

tions addressed the integrative analysis of mRNA and miRNA 

expression data (Cakir et al., 2014), the proteome of algae (Wirth, 

von Bergen, Murugaiyan, et al., 2012), whole genome histone 

modification patterns (Steiner et al., 2012) and the genomic diver-

sity of human ethnicities (Binder and Wirth, 2015). 

2 FUNCTIONALITY 

Package usability. The oposSOM package requires the input of 

gene-centered expression data solely, e.g. as pre-processed micro-

array intensity data or RNA-seq read counts in log-scale. All other 

program parameters are optional (see package vignette). An image 

of the analysis environment is stored upon completion of the opos-

SOM run.  

Workflow. oposSOM comprises a multitude of analysis modules 

whose functionalities were described in detail in our previous 

publications. An illustration of the workflow and a complete list of 

methods implemented in the package can be found in the supple-

mentary material. In brief, the package fulfils the following tasks: 

• The SOM space obtained from the training process is charac-

terized by several supporting maps and profiles providing, e.g., 

the number of genes mapped to each meta-gene. 

• Samples are individually portrayed in PDF report sheets allow-

ing the detailed examination of their expression landscapes and 

especially to identify modules of co-expressed genes. 

• Feature maps, reports and lists allow feature selection and 

evaluation of their statistical significance. 

• Gene set enrichment analysis of the expression modules pro-

vides their functional context based on a large collection of 

predefined gene sets. 

• Sample diversity analysis and class discovery is performed 

using multiple algorithms (e.g. hierarchical clustering, correla-
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tion spanning tree) and different metrics (Euclidean distance, 

Pearson’s correlation coefficient). 

Results. oposSOM stores the results in a defined folder structure. 

These results comprise a variety of PDF documents, which provide 

extensive information about the systems studied (for example plots 

and images of the input data, supplementary descriptions of the 

SOM generated and associated metadata, the sample diversity 

landscape and also functional annotations). The PDF reports are 

complemented by CSV spreadsheets, which render the complete 

information accessible. Detailed descriptions of the algorithms and 

visualizations were given in our previous publications (Wirth et 

al., 2011; Wirth, von Bergen, and Binder, 2012; Wirth, 2012; 

Hopp, Wirth, et al., 2013; Hopp, Lembcke, et al., 2013). HTML 

files are generated to provide easy access to the analysis results via 

an intuitive and descriptive interface. A Summary.html can be 

found in the results folder created by oposSOM. We recommend 

new users to browse the results using this interface. 

3 USE CASE: PORTRAYING OF CANCER 

SUBTYPES 

We applied oposSOM to patient expression data of mature aggres-

sive B-cell lymphomas to characterize their genome wide expres-

sion landscapes in terms of four distinct molecular subtypes which 

associate with differing clinical phenotypes and survival prognosis 

(Hopp, Lembcke, et al., 2013).  

Fig. 1 provides an overview of the analysis steps: The expression 

portraits visualize the expression landscape of each individual 

sample (Fig. 1a) and of each subtype (Fig. 1b). Red and blue ‘spots’ 

in the portraits can be assigned to modules of co-expressed genes 

up- and down-regulated in the respective sample/subtype, respec-

tively. The subtype portraits in Fig. 1b immediately reveal distinct 

and subtype-specifically over-expressed expression modules 

emerging as red spots located near the corners of the respective 

portrait. 

All expression modules detected are summarized in the spot-

overview map (Fig. 1c). Each module is characterized in terms of 

the list of genes included, their mean expression profile in all 

samples studied and a list of enriched gene sets enabling functional 

interpretation (Fig. 1d). Sample diversity plots, e.g. based on corre-

lation network and correlation spanning tree algorithms visualize 

multivariate similarity relations between the samples (Fig. 1e & f). 

They support our definition of the molecular subtypes by forming 

well separated sample clusters.  

A second use case addressing the expression landscapes of human 

tissues can be found in the supplement. It illustrates advantages of 

oposSOM data portraying compared to a ‘traditional’ two-way 

clustering heatmap. 

4 CONCLUSION 

oposSOM bundles a series of sophisticated analysis methods with 

intuitive visualization options to study high-dimensional data with 

the special focus on gene-centered expression data. It is designed 

for a broad user community ranging from bioinformaticians with 

demands for comprehensive analyses in a sophisticated workflow 

to application-oriented experimenters with needs in intuitive visu-

alization options for their data. 
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Fig. 1. oposSOM analysis of a cohort of 231 mature B-cell lymphoma

cases (see text). 
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Supplementary text 

1. High-dimensional data portraying of healthy human tissues 

In a pilot publication, we analyzed microarray expression data of 67 healthy human tissue 

specimen (Wirth et al., 2011). Our method transformed the whole genome expression pattern 

of about 22,000 genes into a SOM coordinate system, which allowed intuitive visualization of 

transcriptional activity of each sample in terms of mosaic portraits. They exhibit characteristic 

spatial color patterns serving as fingerprint of the transcriptional activity of the respective 

tissue sample (see Figure S 1a and (Wirth et al., 2011) for details), and allow for direct 

comparison of the expression of individual samples in a simple and intuitive way: In 

particular, each tile of the portraits refers to one metagene. The metagenes act as 

representative of disjoint clusters of single genes with similar expression profiles. The color 

gradient was chosen to visualize over- or underexpression of the metagenes in the particular 

sample compared with the mean expression level of each metagene in the pool of all samples 

studied: Maroon codes the highest level of gene expression; red, yellow and green indicate 

intermediate levels and blue corresponds to the lowest level of gene expression. The emerging 

spot patterns enables identification of clusters of signature genes, called expression modules, 

which are activated or deactivated in a sample specific fashion (Wirth, von Bergen, and 

Binder, 2012). 

Some tissues combine the characteristic spot patterns of other tissues (Figure S 1a). For 

example, the expression portrait of tongue shows the typical over-expression spot evident in 

the portraits of epithelial tissues (e.g. oral mucosa) but also the over-expression spot typically 

found in muscle tissues (e.g. skeletal muscle) as well, thus directly identifying tongue as a 

‘mucosa covered muscle’.  

The two-way clustering heatmap of the tissue data is shown in Figure S 1b for comparison. It 

has its strengths in summarizing expression patterns of a large number of samples, however 

the individualized examination of specific sample characteristics is less intuitive compared 

with SOM portraying. In particular, the modular combination of expression patterns of muscle 

and mucosa are not evident in the heatmap column representing the tongue sample (Figure S 

1b). 

Further, the use of metagene instead of single gene expression data leads to an increased 

discriminating power in downstream agglomerative analyses such as hierarchical clustering 

and independent component analysis (Wirth et al., 2011). In consequence, metagenes can be 

seen as a natural choice to detect context-dependent patterns of gene expression in complex 

data sets.  
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Figure S 1: (a) Tissue specific expression patterns combine in selected expression portraits: 

The portrait of tongue shows two spots of up-regulated metagenes. One of them is 

characteristic for mucosa type tissues (red circles) and the other one for muscle tissues 

(yellow circles). (b) Two-way clustering heatmap of the tissue data masks this combinatorics. 

The tongue, mucosa and muscle samples are indicated using arrows colored according to the 

frames in panel a. 

 

2. Example session of the oposSOM package 

As example, we make use of human tissue data downloaded from Gene Expression Omnibus 

repository under GEO accession no. GSE7307. It contains about 20,000 genes in more than 

650 tissue samples. A subset of 12 selected tissues is provided in oposSOM. The following R-

code creates the runtime environment and launches the analysis pipeline for this human tissue 

expression data: 

 

library(oposSOM) 

data(opossom.tissues) 

 

env <- opossom.new( list(  

dataset.name = "Tissues", 

dim.1stLvlSom = 20 ) ) 

 

env$indata <- opossom.tissues 
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env$group.labels <- c(rep("Homeostasis", 2), 

"Endocrine", 

"Digestion", 

"Exocrine", 

"Epithelium", 

"Reproduction", 

"Muscle", 

rep("Immune System", 2), 

rep("Nervous System", 2) ) 

 

env$group.colors <- c(rep("gold", 2), 

"red2", 

"brown", 

"purple", 

"cyan", 

"pink", 

"green2", 

rep("blue2", 2), 

rep("gray", 2) ) 

 

opossom.run(env) 

 

oposSOM will run through all analysis modules without further input. The tissue example will 

take approximately 30 minutes to finish, depending on users' hardware. Please note that 

subsidiary parameters are omitted here. A detailed description can be found in the package 

vignette. 
 

3. oposSOM workflow 

Figure S 2 shows a brief overview of the oposSOM workflow: 

 Input data are given as numerical matrix with rows and columns representing genes 

and samples, respectively. The samples are usually quantile normalized and the genes 

centralized with respect to each gene’s mean expression level. In general, different 

sources of molecular-biological data can be processed by oposSOM (Wirth, von 

Bergen, Murugaiyan, et al., 2012; Binder and Wirth, 2015; Steiner et al., 2012). 

 A self-organizing map (SOM) is trained using the input data (Kohonen, 1995). 

Parameters of SOM training were systematically evaluated and adjusted in our 

previous publications (Wirth et al., 2011; Wirth, von Bergen, and Binder, 2012; Wirth, 

2012; Binder and Wirth, 2015). We have shown that a SOM of size between K=40x40 

and 60x60 metagenes with rectangular topology and Gaussian neighborhood function 

provides optimal results in many applications on large-scale molecular-biological data. 

 Supporting maps and profiles are generated to provide additional information about 

the structure of the SOM space obtained after training, and about the metagenes and 

associated ‘single’ genes (Wirth et al., 2011; Wirth, 2012). They comprise: 

o The population map, presenting the number of genes mapped to each 

individual metagene 

o Maps of metagene variance & entropy and significance of differential 

expression 

o Profiles of different sample entropy measures 

o Profiles of topological characteristics of the samples’ expression portraits 

 Visualization of the samples in terms of expression portraits exhibits characteristic 

spatial color patterns and serves as fingerprint of the transcriptional activity (Wirth et 

al., 2011). Additional portraying options are given by: 
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o Alternative color scales such as WAD and loglog-fold-change (Wirth et al., 

2011) 

o Rank maps according to differential feature analyses (fold-change, shrinkage-t 

test and WAD-score) (Wirth, von Bergen, and Binder, 2012) 

 oposSOM applies different algorithms to segment the SOM space into distinct 

expression modules of co-expressed genes (Wirth et al., 2011; Wirth, 2012), which are 

subsequently characterized using PDF reports and CSV spreadsheets. 

o Integration of all over- and underexpression spots into one summary map, 

respectively 

o k-means clustering of the SOM metadata space 

o Clustering of highly correlated metagenes using iterative pooling according to 

a threshold criterion 

 Function mining of the samples and expression modules is achieved by gene set 

enrichment analysis (Wirth, von Bergen, and Binder, 2012). It includes more than 

6,000 sets of genes with known biological background derived, e.g., from gene 

ontology and literature. The results are provided in terms of comprehensive 

spreadsheets and in several report sheets: 

o Sample and module reports 

o Overview heatmaps summarizing enrichment of a large number of gene sets  

o Enrichment profiles for the individual gene sets 

o Mapping of members of each gene set into SOM space 

o Cancer hallmark enrichment analyses 

o Enrichment analyses for genes sets relating to chromosomal positions 

 Sample diversity analysis applies different algorithms and distance metrics to discover 

the class structure of the data (Wirth et al., 2011; Wirth, 2012; Hopp et al., 2013): 

o Hierarchical clustering heatmaps 

o Neighbor joining clustering trees 

o Graph-based algorithms: correlation spanning tree and correlation network 

approaches 

o Independent component analysis (ICA) 

 Group centered analyses allow for evaluation of specific characteristics of the groups 

defined: 

o Group specific expression portraits in different color scales and pairwise 

differential expression maps (fold-change, significance, fdr) directly compare 

expression landscapes of the groups 

o Specific functional characteristics are given within PDF repots and 

spreadsheets 

o Stability of the groups is estimated using correlation silhouette methods 

 Differential expression analyses can be applied for pairs of samples or groups of 

samples. PDF report sheets and spreadsheets are generated consisting of: 

o Statistical evaluation of differential expression (Wirth, von Bergen, and 

Binder, 2012) 

o Pairwise differential expression portraits 

o Functional characterization using gene set enrichment analysis 

 A HTML interface provides easy access to all analysis results accompanied by brief 

descriptions.  
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Figure S 2: Overview of the oposSOM workflow and analysis modules. Example illustrations 

are shown within each module. 
 

4. New functionalities introduced with oposSOM 1.0 on Bioconductor 

The oposSOM-package release on Bioconductor is highly superior to the version released on 

CRAN in 2011: 

 

 Structure of the source code was thoroughly revised to meet the requirements of 

Bioconductor.  

 Organization and presentation of the results output was improved, accompanied with 

an extended HTML interface to access all results. 

 A package vignette was introduced. 

 New analysis modules were implemented: 

o Metagene entropy and portrait topology analyses 

o Neighbor-joining clustering of the samples 

o Correlation Network analysis of the samples 

o Enrichment profiles for the individual gene sets 

o Overview heatmaps summarizing enrichment of a large number of gene sets 

o Cancer hallmark enrichment analyses 

o Enrichment analyses for genes sets relating to chromosomal positions 

o Spot report sheets and spot correlation (wTO) networks 

o Expression portraits, differential expression analyses and functional 

characteristics summarized for the groups defined 

o Stability analyses of the groups using correlation silhouette methods 

o Differential expression analyses for pairs of samples or groups of samples, 

including differential expression portraits and functional characterization 

 Primary input data can be given as Bioconductor ‘ExpressionSet’ object. 
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