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ABSTRACT 
Self organizing maps (SOMs) portrait molecular phenotypes 
with individual resolution. We demonstrate the potency of 
the method in selected applications characterizing the diver-
sity of gene expression in different tissues and cancer sub-
types, mRNA and miRNA fingerprints of stem cells, the 
proteome landscape of algae and genomic relations between 
humans from different populations. It is further shown that 
SOM portraiting provides a comprehensive frame to de-
scribe development, differentiation and diversity in space 
and/or time. 

1 INTRODUCTION 

Molecular biology is presently flooded by masses of high-
throughput data generated by newest generation sequencing 
and microarrays as well as by protein shotgun experiments, 
for example. This huge amount of data challenges tasks such 
as dimension reduction, data compression and visual percep-
tion to extract reliable biological information. These chal-
lenges are still intensified by the fact that the new techniques 
enable to pursue ‘personalized’ approaches aiming at resolv-
ing and understanding biological variability on the level of 
individual molecular pheno- and genotypes. 
We here portrait the molecular phenotypic landscapes with 
individual resolution using SOM machine learning. The 
method is applied to different levels of organization (cells, 
tissues, individuals) in different OMICs realms (mRNA and 
miRNA expression, proteome fingerprinting and SNP geno-
typing) using data from different technologies (microarrays, 
mass spectrometry) to survey its potency. We performed also 
second level agglomerative analysis to track the relations 
between the individual portraits in space and/or time to char-
acterize development, differentiation and diversity. 

2 SELF ORGANIZING MAPS 

SOM technique has been proven useful in visualizing and 
tracking high-dimensional gene expression data in the con-
text of cell differentiation, organogenesis and classification 
[1-3]. SOM clusters features by placing those with similar 
profiles in a series of conditions together into ‘meta-features’ 
and creates images that serve as molecular portraits of each 
sample studied. These images show characteristic textures 

and spot structures which can be treated as new, complex 
objects for next level data analysis. On the other hand, SOMs 
preserve the information richness of the original data allow-
ing detailed, multivariate explorative comparisons between 
samples. SOMs can be generated for all kinds of high dimen-
sional data including mRNA and miRNA expression, SNP- 
and proteome data obtained from techniques such as microar-
rays, next generation sequencing and mass spectrometry. 
Our SOM algorithm starts with raw experimental data refer-
ring to multiple conditions such as different individuals in a 
patient cohort study, different treatments in a treatment-
versus-control investigation or different time points in a time-
series experiment. The raw data are subjected to preproces-
sing which includes calibration and normalization tasks to 
remove systematic biases from the data and to minimize the 
scattering between individual samples and to transform them 
into unique scale chosen typically relative to a suited refer-
ence state.  
In the next step, the preprocessed data are entered into the 
unsupervised machine learning program to train a SOM rep-
resenting information-rich diagrams as illustrated in Figure 1. 
The SOM method applies a neural network algorithm to pro-
ject high dimensional data onto a two-dimensional visualiza-
tion space [4-5]. The algorithm initializes a sufficient number 
of so-called meta-feature profiles and arranges them in to a 
two-dimensional grid. They represent vectors of dimension-
ality given by the number of conditions studied. Then each of 
the respective vectors of all measured single features is asso-
ciated with the meta-feature of closest similarity which, in 
turn is adjusted so that it more closely resembles the profiles 
of the associated single features. An iterative procedure pro-
gressively optimizes the similarity between all meta- and 
single features where also the meta-features of adjacent tiles 
are adjusted using a distance dependent weight. The resulting 
final SOM consists of regions of similar meta-feature pro-
files. Each of them represents a minicluster of single features 
with similar profiles. The profiles of the meta-features can be 
understood as a sort of ‘eigenmodes’ characterizing the mul-
titude of single profiles inherent in the data. 
For each condition studied a mosaic image is constructed by 
color-coding the tiles according to the amplitude of the re-
spective meta-features. This leads to a coherent texture that is 
characteristic for each sample. Since the SOMs assign the 
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same meta-feature to the same tile in all samples of a series, 
they can be directly compared to each other allowing imme-
diate identification of interesting groups of features. 
Typically, the number of tiles to ‘pixelate’ the SOM is about 
one order of magnitude smaller than the number of single 
features available giving rise to a smooth spot pattern where 
each spot clusters metagenes showing local maximum (or 
minimum) amplitudes of the respective meta-features in the 
respective sample.  

 
Figure 1: Molecular phenotypic portraits are obtained using SOM 
machine learning. It projects high dimensional molecular data of a 
series of different samples into a two-dimensional grid where each 
tile refers to one characteristic meta feature (thick lines). Different 
numbers of individual features with similar profiles (thin lines) are 
assigned to each meta profile (see numbers in the grid). The meta 
features are then transformed into one individual map per condition. 
The tiles in these maps are color-coded to indicate high or low am-
plitudes of the respective meta profile. The parallel evaluation of 
multiple samples allows to link their overall profile pattern. For 
example, the metagene of the tile in the left upper corner of the mo-
saic is underexpressed in sample no. 1 and overexpressed in sample 
no. 2 as indicated by the red and blue circles and the color-code in 
the respective mosaics. So-called overview maps can be extracted 
from the series of individual maps which summarize, e.g., all spots 
due to high amplitudes of the meta profiles. Similarity relations 
between the individual maps are shown in the 2nd level SOM. 

The method effectively compresses the original high-
dimensional data in two respects: Firstly, ten thousands of 
correlated profiles of single features are collected into a few 
thousand clusters where each is characterized by one repre-

sentative meta-feature. Secondly, the textures of the obtained 
SOM are decomposed into a few (typically less than one 
dozen) spots of similar amplitudes of the meta-feature. This 
double compression sequentially applies global and local 
criteria taking into account the correlated behavior of the 
features in all samples and their amplitudes in the different 
samples as well. 
For examination of the similarities between the individual 
maps we used the respective meta features instead of single 
features which provides better results in terms of sensitivity 
and specificity [6]. So-called second level SOM analysis 
aggregates the samples studied into one map which directly 
visualizes their mutual similarities. 2nd level SOM analysis 
uses the meta-feature profiles as input and then clusters the 
samples and not the features as in 1st level SOM analysis. 
Each tile of the 2nd level SOM mosaic characterizes the pro-
file of a representative meta-sample. In addition, we generate 
maximum spanning trees (MST) which visualize the mutual 
correlations between the individual maps considering all 
pairwise combinations of their meta-features. 

3 mRNA EXPRESSION PORTRAITS 

Raw data referring to different experiments using microar-
rays are downloaded from public data repositories such as 
the Gene expression omnibus (GEO). After preprocessing 
the expression data are feed into the SOM machine learning 
algorithm as described previously [6]. Our SOM method 
transforms the whole genome expression pattern of more 
than 22,000 single genes into mosaic images. Their colored 
textures serve as individual portraits of mRNA expression in 
each sample (see Figure 1 for a schematic overview). 

3.1 Transcriptome atlas of human tissues  
The tissue-specific patterns of mRNA expression can indi-
cate important clues about gene function. Using GeneChip 
microarray data, we analyzed 67 different tissue types to cre-
ate a SOM-compendium of gene expression in normal hu-
man tissues suitable as a reference for defining basic organ-
specific gene activity.  
Figure 2a shows SOM-portraits of selected tissues using a 
60x60 mosaic grid. Each tile of the SOM mosaics refers to 
one of 3,600 metagenes characterizing the expression land-
scape of the tissues. These metagenes act as representatives 
of miniclusters of co-regulated single genes which number 
varies from metagene to metagene. The color gradient of the 
map was chosen to visualize over- and underexpression of 
the metagenes in the particular tissue compared with the 
mean expression level in the pool of all tissues studied: Ma-
roon codes the highest level of gene expression; red, yellow 
and green indicate intermediate levels and blue corresponds 
to the lowest level of gene expression.  
Each mosaic exhibits characteristic spatial patterns serving as 
fingerprint of the transcriptional activity of the respective 
tissue. These expression portraits reveal a series of about one 
dozen stable over- and underexpression spots which selec-
tively characterize different tissue categories such as nervous, 
immune system, muscle, exocrine, epithelial or adipose tis-
sues. For example, the profiles of adipose tissues might be 
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identified by the maroon-red overexpression spot in the right 
upper corner and those of nervous tissues by a similar spot in 
the left upper corner. Single tissues of mixed characteristics 
such as tongue (composed of expression spots found in mus-
cle and epithelial tissues) can be easily identified. Some of 
the patterns reveal strong anticorrelation, e.g. the spot which 
shows overexpression in nervous tissues but underexpression 
in the other tissues and vice versa.  

 

 
Figure 2: Expression portraits of selected human tissues. The 2nd 
level SOM shows the similarity relations between the tissues. The 
dots are colored according to the different tissue categories. 

We applied 2nd level SOM analysis to establish similarity 
relations between the individual 1st level SOM portraits 
(Figure 2b). Each tissue is represented by small circles filled 
with the color of its previously assigned tissue category. This 
map offers an option to visualize similarities and differences 
between the samples with direct relation to the original SOM 

pattern. Essentially one distinguishes three main clusters 
namely that of nervous tissues (grey), immune system tissues 
(blue) and the remaining ones confirming the hypothesis that 
the mosaic textures also portrait tissue function. 
To further consolidate this result we applied gene set enrich-
ment analysis to the most pronounced overexpression spots 
[7]. Figure 3 shows the overexpression summary map which 
integrates nine spots showing strong overexpression in any of 
the tissues. The genes associated with each spot are analyzed 
for enrichment of genes taken from a collection of 1454 gene 
sets pre-selected according to the GO-categories molecular 
function, molecular process and molecular component. En-
richment of the genes from each set was estimated for each 
of the spots using the hypergeometric distribution which pro-
vides an ordered list of gene sets ranked with decreasing sig-
nificance of overrepresentation. Hence, each spot is assigned 
to tissues strongly overexpressing the respective metagenes 
and to the GO-categories of the most enriched gene sets (see 
the right legend in Figure 3).  

 
Figure 3: The overexpression summary map shows nine spots repre-
senting metagenes which are strongly overexpressed in different 
tissues. Enrichment of a collection of 1454 gene sets is estimated for 
each spot using the hypergeometric distribution. The right legend 
assigns the two topmost enriched gene sets to the respective spots 
together with the tissues which overexpress this particular spot. 

This combination of SOM-spots with concepts of molecular 
function enables identification of subsets of tissue specific 
genes that potentially define key biological processes charac-
terizing each organ. For example, spot A in the left upper 
corner of the SOM is clearly related to molecular processes 
in nervous cells according to the leading gene sets. Also other 
spots can be associated with distinct molecular functions 
such as immune system processes (spot F), sexual reproduc-
tion (spot E) or muscle contraction (spot B).  
These results illustrate the general utility of the SOM-
approach by constructing a map of function-related gene sets 
for large, heterogeneous sets of gene level expression data. 
This map is consistent with known tissue-specific pathways 
and enables verification and amendment of function-related 
gene sets. 

3.2 Disentangling subtypes of B-cell Lymphoma 
Aggressive B-cell lymphoma is a heterogeneous disease with 
recognized variability in clinical outcome, genetic features, 
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and cells of origin. To date, transcriptional profiling has been 
used to highlight similarities between tumor cells and normal 
B-cell subtypes and to associate genes and pathways with 
unfavorable outcome. Transcriptional profiling has been re-
cently used to define B-cell lymphoma more precisely and to 
distinguish subgroups assigned to the molecular (mBL) and 
non–molecular (non-mBL) Burkitt’s lymphoma signatures 
[8].  

 
Figure 4: Expression portraits of B-cell lymphoma cancer subtypes. 
The 2nd level SOM in the part below reveals a virtually univariate 
expression signature giving rise to the one-dimensional arrangement 
of the three groups in horizontal direction. 

This study used biopsy specimens of 220 mature aggressive 
B-cell lymphomas in which at least 70 percent of all cells 
were tumor cells. Of all lymphomas, 44 were assigned to the 
mBL signature and 128 to non-mBL signature. 48 cases 
could not be assigned unambiguously to either of the two 
groups. They form an intermediate group, representing the 
transition zone between the mBL and non-mBL groups. Mi-
croarray data are available under GEO accession number 
GSE4475. 

Figure 4a shows individual SOM-portraits of all three groups 
illustrating the heterogeneity of their expression patterns. 
These individual portraits occupy three distinct, partly over-
lapping areas in the 2nd level SOM (Figure 4b). Importantly, 
the three groups arrange virtually along a line in the horizon-
tal direction whereas the vertical dimension essentially cov-
ers the intra-group variability of the data. The small mosaics 
depicted in the center of each of the three areas are mean 
expression profiles averaged over all individual pattern of 
each group. These mean SOM of the mBL and non-mBL 
groups reveal a relatively unstructured texture with one over- 
and one underexpression spot in two opposite corners of the 
map. This ‘binary’  spot pattern indicates  that genes overex-
pressed in mBL become underexpressed in non-mBL and 
vice versa. Hence, both groups can be distinguished using an 
essentially univariate signature which, in turn, explains the 
one-dimensional arrangement of the three groups in the 2nd 
level SOM. Gene set enrichment analysis shows that genes 
related to the GO-terms ‘cell-cycle’ and ‘DNA-repair’ accu-
mulate in the mBL overexpression spot in the right upper 
corner whereas genes related to ‘cell adhesion’ and ‘inflam-
mation/immune response’ dominate in the non-mBL overex-
pression spot. 
The maximum spanning tree of the B-cell lymphoma sam-
ples provides an alternative view on the heterogeneity re-
ported by the individual expression portraits (Figure 5): The 
mBL- and non-mBL groups aggregate into clearly separated 
clusters. Contrarily, samples of the intermediate type form a 
sort of outer layer in many branches of the mBL- and non-
mBL clusters indicating that they share some of the expres-
sion characteristics with the compact groups, however in a 
relatively diffuse fashion. 

 
Figure 5: Maximum spanning tree of 220 B-cell lymphoma samples 
assigned to mBL-, non-mBL and intermediate groups. 

3.3 Trajectory of prostate cancer progression 
Despite efforts to profile prostate cancer, the genetic altera-
tions and biological processes that correlate with the ob-
served histological progression are largely unclear. Prostate 
cancer is most commonly graded using the Gleason grading 
system, which relies entirely on the architectural pattern of 
cancerous glands. The underlying expression signatures and 
the processes driving the different architectural patterns are 
mostly unknown. A recent microarray study [9] addresses the 
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molecular mechanisms associated with gene expression 
changes in the course of prostate cancer progression using 
laser-capture microdissection to isolate 101 specific cell 
populations from 44 individuals. The samples are assigned to 
five stages of cancer progression ranging from benign 
prostatic hyperplasia (BPH) and prostatic interepithelial neo-
plasia (PIN) to low-grade (Gleason score 3), high-grade (4-5, 
PCA) and metastatic (MET) prostate cancer. 

 
Figure 6: Expression portraits of progressing prostate cancer: The 
part above shows selected SOM of individual laser dissected sam-
ples. In total we included the following sample sizes: 22 (BPH), 13 
(PIN), 12 (PCAlow), 20 (PCAhigh), 17 (MET). They occupy wide 
regions in the 2nd level SOM as illustrated by the colored polygons. 
The mean SOM portraits per stage are located in the center of the 
respective polygon. Note that the spot pattern in theses maps virtual-
ly rotates with progressing cancer giving rise to a U-shaped trajecto-
ry in the map (see arrow). 

We transformed the gene expression data (available under 
GSE 6099) into SOM portraits revealing a relatively diverse 
texture landscape even within the sample groups assigned to 
the different stages of progression (see Figure 6). In the 2nd 
level SOM representation these groups occupy extended re-
gions of strong mutual overlap. Despite their fuzziness the 
stage related areas order along a U-shaped path with pro-
gressing cancer. To get further insights into this trend we 
calculated mean SOM mosaics averaged over all individual 

samples of each group (Figure 6). These mean portraits of 
each stage reveal that the areas of over- (red) and under- 
(blue) expression rotate in counterclock direction along the 
edges of the maps. This result clearly shows that the different 
groups indeed form an ordered developmental series with 
partly overlapping microscopic states in consecutive stages. 
Moreover, the partly circular character of the trajectory re-
flects the fact that a significant part of the genes are similarly 
expressed in the final MET-stage and in the initial BPH-
stage, but differently expressed in the intermediate PIN- and 
PCA-stages. The detailed gene-level analysis reveals that 
genes related to protein biosynthesis and ETS (E26 transfor-
mation specific) target genes show these properties and, 
moreover, demarcate critical transitions in cancer progression 
[9] (see also [10] for details). 

3.4 Stem cells in question 
Induced pluripotent stem cells (IPS) are stem cells artificially 
derived from adult somatic cells by inducing a ‘forced’ ex-
pression of specific genes. IPS are similar to natural pluripo-
tent stem cells, such as embryonic stem cells (ESC), in many 
respects, such as the expression of certain stem cell genes 
and the potency and differentiability, but the full extent of 
their relation to ESC is still being assessed. The opportunity 
of reprogramming somatic cells into IPS suggests better dis-
ease modelling in vitro and potential clinical applications. 
Gene expression profiling provides an important basis for 
revealing the molecular mechanisms involved in pluripo-
tency and initial differentiation events that involve embry-
onic stem cell populations. Utilization of microarray technol-
ogy allows potential opportunities for comparison of datasets 
from different experiments and different stem cell lines.  
Here we investigate the expression signature of induced stem 
cells by comparing their SOM portraits with that of their 
somatic progenitor cells and of ESC. Figure 7 shows the 
SOM gallery of differentiated somatic, derived IPS and ESC 
cells taken from five experiments and of B-cells for compari-
son. Particularly, we ask whether the expression profiles of 
the IPS obtained in the experiments E2-E4 resemble that of 
the respective ESC or not (see also [11] for the detailed dis-
cussion of the objective). Visual comparison of the SOM 
portraits depicted in Figure 7 provides a clear answer, namely 
that experiments E3 and E4 succeeded to derive IPS-like 
expression pattern but E2 does not. Note also that typical 
stemness genes such as OCT4, SOX2, LIN28 and NANOG 
are located in the spot overexpressed in ESC and underex-
pressed in somatic cells near the left lower corner of the map. 
The 2nd level SOM shown in Figure 7 confirms these results: 
The expression portraits of differentiated cells accumulate in 
the right part of the map whereas the ESC are found exclu-
sively in the left part despite the scattering of the individual 
sample points due to different cell types and experiments 
performed independently in different laboratories. The IPS 
obtained in experiments E3 and E4 are located closely to the 
respective ESC whereas ‘adult germline stem’ cells (haGSC) 
obtained in E2 are clustered with differentiated cells in the 
right part of the map. Hence, the SOM portraits clearly show 
that haGSC were fibroblastic but not pluripotent in their gene 
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expression profile in agreement with the results presented in 
[11] but in contrast to the claim given in [12]. 

 
Figure 7: Expression portraits of stem cells and of differentiated 
cells: Data were taken from six experiments (E1…E6) which pro-
vided the SOM portraits of differentiated cells, embryonic stem cells 
(ESC) and induced pluripotent stem cells (IPS, part above, see also 
[11] and references cited therein). The 2nd level SOM illustrates the 
similarity relations between the different cell portraits (small filled 
circles): Differentiated cells and ESC of each experiment are 
marked by large circles connected by a line (E2 – E4). The induced 
stem cells obtained in the respective experiment are marked by 
dashed circles. Their expression portraits in E3 and E4 closely re-
semble that of the respective ESC whereas that in E2 does not. Se-
lected 1st level SOM are shown for illustration. 

Thus SOM transcriptional portraits of cells allow to directly 
evaluate their stemness and to uncover molecular mecha-
nisms involved in differentiation and the maintenance of the 
undifferentiated state. 

4 miRNA PORTRAITS OF STEMNESS 

MicroRNAs are small noncoding RNAs that play important 
posttranscriptional regulatory roles by targeting mRNAs for 
cleavage or translational repression. Owing to their ability to 
regulate numerous genes, often in common pathways, 
miRNAs may be regulators of cellular processes, akin to 
transcription factors that control entire programs of cellular 
differentiation and organogenesis. These miRNA signatures 
therefore represent another layer of regulatory control for cell 
fate decisions in addition to histone modifications, promoter 
methylation, transcription factors, and other regulator ele-
ments. This level of miRNA regulation is important for self-
renewal, pluripotency and differentiation of ESC but also for 
reprogramming of somatic cells into IPS [13]. 
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Figure 8: Similarity relations (2nd level SOM) between miRNA 
expression portraits of stem cells (ESC and IPS) and of differentiat-
ed cells (fibroblasts). The two mosaics per cell system refer to bio-
logical replicates. The insertion assigns the spots in the 1st level 
SOM and the respective number of associated miRNA. 

We generated SOM-portraits of the expression of 697 
miRNA in ESC, fibroblasts and derived IPS obtained in a 
recent microarray study [13]. The miRNA SOMs comple-
ment the respective mRNA profiles presented in the previous 
section. Note that SOM training of miRNA expression data 
uses more than ten times less features than the analogous 
study on mRNA expression. The obtained miRNA portraits 
of the IPS closely resemble that of ESC while differing 
strongly with respect to the precursor fibroblast (Figure 8). 
As in the case of mRNA one finds essentially one pair of 
spots (A and B) referring to features overexpressed in IPS 
and ESC but underexpressed in fibroblasts and vice versa. 
The overexpression spot in ESC and IPS provides tentative 
‘stemness’ miRNA such as the mir-302 and mir-17-92 groups 
where the former is known to regulate switching between 
embryonic and mature phenotypes. The SOM portraits also 
reveal that spot C characterizes dissimilar miRNA expression 
in ESC and IPS. It contains, e.g., mir-371,372 and 373. 
These results together with the mRNA profiling presented 
above lead to a general question regarding the fundamental 
difference between miRNA and mRNA activity with respect 
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to regulatory mechanisms of differentiation and also, how 
both data sets can be combined to generate inter-OMICs 
maps allowing to identify significant associations between 
mRNA and miRNA expression pattern (see [14] for details). 

5 PROTEOME PORTRAITS OF ALGAE 

In the previous sections we applied SOM machine learning 
to microarray expression data. Figure 9 depicts a series of 
SOM mosaics obtained from another high throughput 
method namely MALDI-TOF mass spectrometry. It was ap-
plied to extracts of green algae from the genus Prototheca 
which are often overseen or mistaken for yeast in clinical 
diagnosis. These algae from the Chlorella family are the only 
known plants that cause infections in humans and animals. 
To overcome this diagnostic gap, a MS-method was devel-
oped for fast and reliable identification of Prototheca [15].  
Most of the MS-peaks were found in the range from 4 to 20 
kDa due to high abundant proteins such as ribosomal pro-
teins and ubiquitin. The peaks showed a high reproducibility 
in their peak positions but high variability in the peak ampli-
tudes. The SOM was trained using MS-peaklists of 324 sam-
ples referring to five Prototheca species where one of them 
splits into two genotypes. Each peaklist contains the ampli-
tudes of 1406 peaks. 

 
Figure 9: Maximum spanning tree (MST) of SOM-proteome por-
traits of 58 samples referring to six groups of algae of the genus 
Prototheca. 

The individual SOM mosaics typically show only one over-
expression spot the position of which however varies in a 
species-specific fashion (Figure 9). This property means that 
each species is characterized by a set of peaks showing high 
amplitudes only for this particular species but small ampli-
tudes for all other ones. This highly species-specific pattern 
gives rise to the perfect separation of the six groups in the 
maximum spanning tree (MST) directly connecting the sam-
ples of strongest mutual correlation between their meta-
features. The correct identification of Prototheca species is of 
considerable importance in clinical microbiological laborato-
ries because of its epidemiological impact and because of the 
broadly occurring resistance of pathogenic Prototheca iso-
lates against antimycotics (see [16] for details). 

 
Figure 10: Worldwide SNP-genotype portraits of humans: SOM-
portraits of 48 individuals from different regions of the world (part 
above). Red, green and blue regions refer to minor-homozygous, 
heterozygous and major-homozygous allelic genotypes, respec-
tively. The MST illustrates similarity relations between the 1st level 
SOMs of 995 individuals belonging to 52 ethnic groups from 7 
geographic regions. The inserted SOM refer to arbitrarily selected 
individuals from each region. The dotted circles in both parts of the 
figure mark the same two individuals from Makrani and Sindhi 
populations showing partly African genotypic characteristics. 
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6 HUMAN GENOTYPE PORTRAITS 

Human genetic diversity is shaped by both demographic and 
biological factors and has fundamental implications for un-
derstanding the genetic basis of diseases. Array-based ge-
nome-wide scans have been applied to worldwide popula-
tions, resulting in new insights into the genetic structure and 
relationships of human populations. Genotypes are available 
for nearly thousand individuals from the Human Genome 
Diversity Project, analyzed for approximately 650,000 SNPs 
(single polynucleotide polymorphism) with Illumina 650Y 
arrays [17].  
To illustrate the potency of SOM-portraiting of genotype data 
we trained a SOM using the 50,000 most variant alleles 
among all individuals in this data set. Each of the considered 
alleles provides a trinary profile among the cohort with the 
values 0 (major allele), 1 (heterozygous) and 2 (minor allele). 
The gallery of individual maps shown in Figure 10 reveals a 
high diversity of textures reflecting areas of major-, het-
erozygous- and minor-allelic genotypes of the underlying 
‘meta-alleles’ color-coded in blue, green and red, respec-
tively. Most of these portraits are very similar for individuals 
from the same geographic region. For individuals originating 
from different regions the portraits however progressively 
diverge with increasing geographic distance in most cases. 
The MST-presentation in Figure 10 clarifies this trend: the 
tree roughly resembles the actual geographic distribution of 
the populations, which, in turn, reflects the variation in popu-
lation dynamics among geographic regions.  
Interestingly, the SNP-portraits of a few individuals are lo-
cated away from their expected geographic neighbourhood. 
For example, one Makrani and one Sindhi people are found 
close to the African group in the MST (see dotted circle in 
Figure 10). Detailed inspection of the respective SNP-maps 
reveals that the spot patterns more strongly overlap with the 
typical texture of the African population than with the maps 
of the remainder individuals of Makrani and Sindhi groups 
studied. Makrani are descendants of black Africans brought 
as slaves to Balochistan in medieval times (see, e.g., Wikipe-
dia). The SNP-portraits not only intuitively reflect this fact 
but also the circumstance that other individuals from this 
ethnic group show SNP-portraits closely resembling that of 
other groups from this region such as Brahui or Sindhi. The 
SNP-portraits of Hazara, another group from central Asia, 
reveal considerable similarity with the East Asian population 
presumably due to its partly Mongolian ancestry as descents 
of Mongolian military forces entering this region 500-700 
years ago. Finally, also the SNP-portrait of one of the Bed-
ouin individuals shows clearly the characteristics of black 
Africans. These examples illustrate the applicability of SOM 
machine learning to portrait genotypes with individual reso-
lution and to judge relationships between populations and 
individuals in a simple and intuitive fashion. 

7 CONCLUSIONS AND OUTLOOK 

SOM machine learning enables the kaleidoscopic and intui-
tive view on high-dimensional data without loss of primary 
information. It provides a general frame for analytic tasks 
such as feature selection, integrating concepts of molecular 

function and systems tracking with individual resolution. The 
method extracts meta-features such as meta-genes, -peaks 
and –alleles expressing basal modes of systems behaviour 
important for higher-level, holistic analysis. Ongoing tasks 
also address issues such as ‘interOMICs’ integration and 
associations and the extension of the method to next genera-
tion sequencing and other data types. First examples will be 
given in the talk. 
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