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a b s t r a c t

Our study addresses modes of genomic regulation and their characterization using the distribution of
expression values. A simple model of transcriptional regulation is introduced to characterize the response
of the global expression pattern to the changing properties of basal regulatory building blocks. Random
genomes are generated which express and bind transcription factors according to the appearance of
short motifs of coding and binding sequences. Regulation of transcriptional activity is described using a
thermodynamic model. Our model predicts single-peaked distributions of expression values the flanks
of which decay according to power laws. The characteristic exponent is inversely related to the product
of the connectivity of the network times the regulatory strength of bound transcription factors. Such
‘expression spectra’ were calculated and analyzed for different model genomes. Information on struc-
tural properties and on the interactions of regulatory elements is used to build up a framework of basic
characteristics of expression spectra. We analyze examples addressing different biological issues. Peak
position and width of the experimental expression spectra vary with the biological context. We demon-
strate that the study of the global expression pattern provides valuable information about transcriptional
regulation which complements conventional searches for differentially expressed single genes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The results of microarray-based gene expression analyses,
genome sequencing and other high throughput technologies have
given us estimates of the complexity of molecular networks. There
are tens of thousands of elements (e.g. genes, RNA-transcripts,
proteins, metabolites) and at least as many connections between
them subsumed as ‘interactome’. How to understand the functional
principles of such complex, highly structured and internally inter-
acting systems? One option comprises top-down approaches of
reverse engineering which attempt to reconstruct networks from
high-dimensional experimental ‘omics’-data via data fitting and
parameter optimization of appropriate theoretical models. Alter-
natively, one can pursue a descriptive down-top approach which
models the system and its functioning from first principles. Their
reasonability should be tested by comparing the predictions of the
models with experimental data. This modeling approach intention-
ally includes simplifications which enable to take aim at particular
properties of the studied systems while ignoring less relevant ones.

∗ Corresponding authors. Tel.: +49 3419716671; fax: +49 3419716679.
E-mail addresses: binder@izbi.uni-leipzig.de (H. Binder),

galle@izbi.uni-leipzig.de (J. Galle).

The present study addresses transcriptional regulation in a sim-
ple model genome. This genome randomly generates and binds
transcription factors forming a gene regulatory network. Our whole
genome view is motivated by the idea that many aspects of gene
functioning cannot be understood at the level of single genes but
require a systemic approach which considers the manifold of an
ensemble of genes, their possible microstates of activity and their
mutual interactions. Primarily we are interested in characterizing
the response of the global expression pattern to changing prop-
erties of basal regulatory building blocks. As starting point we
used the Random genome model (RGM) approach introduced by
Reil (1999). This model has been utilized to demonstrate emerg-
ing robustness against single base mutations and against random
changes in initial network states as a consequence of stabilizing
selection for a phenotype (Rohlf and Winkler, 2009). Compara-
ble artificial genetic regulatory network models have been used
to study a number of dynamic phenomena found in natural genetic
networks such as heterochrony, evolution and stability (Banzhaf,
2003). Moreover, topological properties of these network models
have been addressed such as the abundance of selected network
motifs and subgraph distributions (Banzhaf and Dwight Kuo, 2004;
Dwight Kuo et al., 2006).

Transcription in gene regulatory networks is based on bio-
physical processes which involve interactions on the molecular
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level between DNA, transcription factors and enzymes such as
RNA-polymerase. We therefore complement the RGM with a ther-
modynamic model of transcriptional regulation adapted from Bintu
et al. (2005). It allows tuning gene expression by the regulatory
action of transcription factors.

Our whole genome approach is also motivated by the techno-
logical development of RNA analytics in the ‘post-genomic era’
which enables to measure global gene expression pattern of a
series of organisms in single experiments. Particularly microar-
ray studies have revealed the complex nature of the large-scale
organization of gene expression. A common result observed in dif-
ferent analyses is that the distribution of gene expression values
seems to exhibit a broad-tail that is characterized by a power law
(Furusawa and Kaneko, 2003; Hoyle et al., 2002; Ueda et al., 2004).
This power law distribution has been interpreted in terms of gen-
eral principles such as ‘proportional dynamics’ (Ueda et al., 2004),
the optimization of self-reproduction (Furusawa and Kaneko, 2003)
and stochastic, noise-driven dynamics of transcription (Nacher and
Akutsu, 2006).

Our model generates a power law distribution of gene expres-
sion as well, however with increasing and decreasing tails for
transcriptional repression and activation, respectively. We ana-
lyzed these spectrum-like distributions for special situations to
characterize the properties of the RGM in terms of simple rules
which reflect different modes of transcriptional regulation. In the
experimental part of this paper we apply these rules to experi-
mental expression spectra which were calculated for a series of
microarray measurements taken from public data repositories.
These examples comprise different biological issues and sam-
ples ranging from embryonic development and cell differentiation
to mutants and oncogenic de-regulation in different tissues and
organisms. The chosen examples show that characterization of the
global expression pattern in terms of the distribution of expression
values provides valuable information about transcriptional regu-
lation which complements conventional searches for differentially
expressed genes.

2. Theory

2.1. The random genome model (RGM)

Following previous work (Reil, 1999; Rohlf and Winkler, 2009),
the construction of the random genome of size Lgenome comprises
the following steps (see Fig. 1 for illustration and Table 1 for defi-
nitions): first, a random string of length Lgenome is generated using
four digits [0,1,2,3] for each position. This choice provides corre-
spondence with the ATGC alphabet of real genomes. Secondly, a
promoter sequence of length Lprom is defined to specify the posi-
tion of the genes in the genome; for example the sequence motif
(01010). Thirdly, Lcod digits downstream of the promoter sequence
are selected that represent the coding region of the gene. The Lreg

digits upstream of the promoter sequence up to the coding region
of the preceding gene define the regulatory region of the gene.

The random genome thus decomposes into elementary regula-
tory building blocks or ‘genes’. Each of them comprises a regulatory
region, a promoter and a coding region in downstream direction.
The minimum length of a gene is the sum of Lprom and Lcod. We
exclude overlapping genes assuming that the distance between
the start points of two adjacent promoter regions is always larger
or equal to the minimum gene length. Our gene definition is in
accordance with previous approaches such as the finite state linear
model (Schlitt and Brazma, 2006). Each coding region can produce
transcripts which subsequently translate into transcription factors
(TF). The binding motif of the TF is generated from the respective
coding motif by counting up the sequence code by one using the
rule i → (i + 1)mod[3] for each digit of the coding motif, for example

Fig. 1. The random genome model: (a) and (b) the random genome consists of a
sequence of ‘genes’ (see also panel c) the number and position of which is deter-
mined by the realization of the promoter motif (P) along a sequence of randomly
generated nucleotides ∈ [0,1,2,3] = [A,C,G,T]. The coding region (C) defines the length
and sequence of the transcripts (T) which translate into the transcription factor using
the rule i = (i + 1) mod 3. This ‘translated’ sequence motifs bind to identical motifs
(B) in the genome. The bound TF regulate the occupancy of the next downstream
promoter (alternatively by repression ‘−’ or activation ‘+’) which, in turn, determines
the transcriptional rate of the adjacent coding region. (c) Each ‘gene’ consists of a
regulatory region, the promoter and the coding region of length Lreg , Lprom and Lcod ,
respectively.

(231012) → (302123). Each TF binds to motifs of identical sequence
in the regulatory regions of the genome. Bound TF regulate the
occupancy of the nearest downstream promoter by a thermody-
namic interaction model (see below). The occupancy is defined as
the probability of the promoter to bind RNA-polymerase. It governs
transcription of the adjacent coding region and thus the expression
of the respective gene. We assume direct proportionality between
promoter occupancy and gene expression. The cumulative pro-
moter occupancy of all genes consequently determines the total
expression level of the artificial genome.

2.2. Statistical properties of the RGM

The generation rules of the RGM use three length parameters
(Lgenome, Lprom and Lcod). They determine the basic size relations of
the random genome: the mean length of the genes and of the reg-
ulatory regions, the mean number of genes forming the genomes
and the average number of TF which bind to the genes (see Table 1).

The probability that a given position of the genome is a starting
point of a promoter sequence, is exclusively defined by the length of
the promoter motif. It determines the mean length of the genes (Eq.
(1) in Table 1 and Fig. 3a) and the mean number of genes (Eq. (2)).
Analogously, the mean separation distance between two binding
sites of a TF depends exclusively on the length of the coding region
Lcod (Eq. (3)) which together with the length of the genome deter-
mines the mean number of binding sites per TF in the genome (Eq.
(4)).

Fig. 2 shows the network of interacting genes for one realization
of the RGM: ‘OUT-bound’ and ‘IN-bound’ connections refer to tran-
scription and TF binding, respectively as illustrated in direction of
the arrows. Clearly, the number of IN- and OUT-bound edges varies
from gene to gene. We derived analytical solutions for three impor-
tant probability distributions comprising the distribution: (i) of the
length of a regulatory region, (ii) of the number of binding sites per
TF in the genome (OUT-degree distribution) and (iii) of the num-
ber of TF-binding sites within the regulatory region of one gene
(IN-degree distribution).
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Table 1
The random genome model: glossary of symbols, size and thermodynamic relations and values used.

Symbols and equations Values Eq. no.

Length parameters
Length of the genome Lgenome 105

Length of the promoter Lprom 5

Length of the coding region Lcod 7

Size relations
Mean length of the gene 〈Lgene〉 = 4Lprom ∼1000 (1)

Mean number of genes in the genome 〈Ngene〉 = Lgenome
〈Lgene 〉 ∼100 (2)

Mean distance between two binding sites of a TF 〈Lbind〉 = 4Lcod ∼1000 (3)

Mean number of TF-binding sites per gene 〈Nbind〉 = Lgenome
〈Lbind 〉 ≈ Lgenome

4Lcod
∼6 (4)

Thermodynamic parameters
Ratio of the number of RNAP/TF molecules to the number of non-specific

binding sites of RNAP and TF, respectively
rRNAP/ns = NRNAP

Nns
10−4

rTF/ns = NTF
Nns

10−4

Standard free energy: increment of specific binding of RNAP and TF
relative to non-specific binding, respectively

εRNAP in units of −kT 2

εTF in units of −kT 14

Regulation free energy: increment of the standard free energy of specific
RNAP binding induced by bound TF

εr in units of −kT ±1

Maximum value of the binding activity of TF Xmax
TF

1000

Thermodynamic relations
Basal binding activity of RNAP X0 = rRNAP/ns · exp(εRNAP ) ∼0.001 (5)

Binding activity of TF XTF = rTF/ns · exp(εTF ) 0. . .1000 (6)

Regulation factor F = 1+XTF ·exp(εr )
1+XTF

(7)

Promoter occupancy (probability that RNAP binds to the promoter) � = F ·X0
1+F ·X0

0. . .1 (8)

Scaling condition, defines the expression level of each gene XTF ≡ Xmax
TF

· � (9)

We assume that the genome length largely exceeds the mean
gene length and that the mean gene length is large compared to
the minimum gene length:

Lgenome 
 〈Lgene〉 
 Lprom + Lcod (10)

Condition (10) implies artificial genomes which comprise a large
number of genes and ensures that the mean length of the regulatory
region of a gene can be approximated by the mean length of a gene,
i.e. 〈Lreg〉 ≈ 〈Lgene〉 (see also Fig. 3a).

The individual lengths of the regulatory regions and also the
numbers of TF-binding sites within each regulatory region vary
from gene to gene and depend on the particular realization of the
genome. Particularly, the length of the regulatory regions can vary
within the limits Lgenome ≥ Lreg ≥ 0. The probability distribution of
Lreg is approximately given by the conditional probability to find
the next promoter motif along the random genome sequence after
Lreg + 1 positions (Rohlf and Winkler, 2009):

wreg(Lreg) ≈ 4−Lprom · (1 − 4−Lprom )Lreg = (1 − e−1/k0 ) · exp
(−Lreg

L0

)
with L0 = −1

ln (1 − 4−Lprom )Lreg ≈ 4Lprom = 〈Lgene〉 (11)

Eq. (11) defines an exponential decay with Lreg where the decay
length L0 is given to a good approximation by the mean gene length
(see Fig. 3b).

The OUT-degree distribution can be approximated by the proba-
bility distribution to find k binding sites of a TF (binding length Lcod)
in the independent regulatory regions of a number of 〈Ngene〉 genes
each of them of average length 〈Lreg〉. It is given by the binomial

distribution:

wout(k) = wout(〈Lreg〉, k) ≈
(

〈Lreg〉
k

)
· pk · (1 − p)〈Lreg 〉−k

with p = 〈Ngene〉
〈Lbind〉 = 〈Ngene〉 · 4−Lcod (12)

The mean value of k averaged over wout(k) provides the mean
number of binding sites per TF in the genome, 〈Nbind〉 = p·〈Lreg〉 (Eq.
(4)).

Typically one gets p � 1. This transforms the out-degree
distribution into a Poissonian one to a good approximation:
wout(k) ≈ 〈Nbind〉k·exp(−〈Nbind〉)/k! (Rohlf and Winkler, 2009).

The IN-degree distribution is calculated as the weighted mean of
wout(Lreg, k) averaged over all possible lengths Lreg

win(k) ≈
Lgenome∑
Lreg=0

wreg(Lreg) · wout(Lreg, k) ≈ (1 − e−1/k0 ) · exp
(−k

k0

)
with k0 = 1

ln(1 + 〈Nbind〉−1)
≈ 〈Nbind〉 (13)

Eq. (13) defines an exponential decay with a characteristic decay
number k0. For 〈Nbind〉 
 1 the decay number can be approximated
by the mean number of bound TF (see Fig. 3b). The mean value
of k averaged over the IN-degree distribution provides the mean
number of TF-binding sites per regulatory region. This number has
the same value 〈Nbind〉 as the mean number of binding sites per TF
within the genome according to the condition of material balance.
Hence, 〈Nbind〉 represents a measure of the intrinsic connectivity
of the regulatory network. Representative OUT- and the IN-degree
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Fig. 2. Network of 84 interacting genes produced by one particular realization of
the random genome of size Lgenome = 105. The nodes are the genes. The arrows point
in direction from transcription to binding of TF. The number of OUT-bound and
IN-bound connections varies from gene to gene. Their distribution is given by the
OUT-degree and IN-degree distributions, respectively. The IN-bound events regu-
late the expression of the respective gene using a thermodynamic model (see text).
Activating and repressing interactions are colored in red and blue, respectively. They
combine for each gene giving rise to activated (red) or repressed (green) promoter
activity. The size of the circles scales with the degree of activation or repression
relative to the basal expression rate. The nodes are ordered inwards with increasing
number of IN-bound connections and thus with increasing degree of transcriptional
regulation. Loops refer to auto-regulation.

distributions are shown in Fig. 3c. The dependence of the average
number of binding sites per TF in the genome on the coding length
is illustrated in Fig. 3d.

The promoter length used in our RGM realization (Lprom = 5)
defines a mean gene length of 〈Lgene〉 = 103 which is compara-
ble with the mean gene length of prokaryotes (Koonin and Wolf,
2008). The fraction of gene products dedicated to gene regula-
tion in prokaryotes ranges from less than 1% to about 10% (see
Pérez-Rueda et al., 2004 and references cited therein) where the
percentage scales approximately quadratically with the genome
size (Maslov et al., 2009). For total genome lengths of (2–6) × 106

one gets (0.2–6) × 105 for the size of the respective subnets of genes.
This, in turn, covers the length of the RGM used. The size of the
RGM in our study consequently falls into the typical range of the TF
subnet of prokaryotes.

Increasing complexity during evolution is related to changes
of the organization and regulation of the genome and transcrip-
tome such as the massive increase of the amount of non-coding
RNA and the larger fragmentation of the genes into introns and
exons (Mattick, 2007; Taft et al., 2007). This goes along with the
appearance and increasing complexity of ‘epigenetic’ mechanisms
such as chromatin remodeling (Meissner et al., 2008; Mikkelsen
et al., 2007; Simon and Kingston, 2009) and also with the strong
increase of proteome and interactome sizes (Stumpf et al., 2008).
On the other hand, the size of the protein coding sequence per
haplotype only weakly varies (Mattick, 2007). Thus, our RGM can
be understood as a model of the TF sub-network also in higher
organisms.

2.3. Thermodynamics of genomic regulation

Each promoter initiates transcription of the coding motif via
specific binding of RNA-polymerase (RNAP). This process is mod-
ulated by TF binding in the regulatory region upstream of the
promoter. Both processes are taken into account using a thermody-
namic model. In agreement with other thermodynamic models for
transcription regulation (Bintu et al., 2005; Lassig, 2007; Segal et al.,
2008) we postulate that the expression level directed by each pro-
moter is proportional to the promoter occupancy which is defined
as the probability that RNAP occupies the promoter sequence. We
also assume that the system is in thermodynamic equilibrium, such
that each regulatory state is achieved with probability propor-
tional to the Boltzmann distribution. This assumption is justified
in cases where the transcription rate is slower than the rate at
which transcription factors and polymerase bind and unbind the
DNA. Accordingly, stochastic fluctuations of expression on short
time scale are assumed leveled out.

Following the thermodynamic model of Bintu et al. (2005) the
promoter occupancy � is governed by the following factors (for
illustration see Fig. 4 and Table 1 for definitions and equations):

(i) The basal RNAP binding activity X0 (Eq. (5)). It was derived
assuming a binding equilibrium of free and bound RNAP
molecules where the latter ones distribute between non-
specific and specific binding sites. X0 is governed by the
number of available RNAP molecules, the number of non-
specific RNAP binding sites and the standard free energy
increment upon specific binding of RNAP compared with non-
specific binding. Eq. (5) assumes excess of non-specific sites,
Nns 
 NRNAP (see Bintu et al., 2005 for details). The RNAP
binding affinity defines the basal promoter occupancy in the
absence of regulators (see Fig. 4a).

(ii) The binding activity of the transcription factors XTF (Eq. (6))
which refers to the binding equilibrium of free and bound
TF where the latter ones distribute between non-specific and
specific binding sites in analogy with RNAP binding. XTF is
governed by the number of available and thus expressed tran-
scription factors, by the number of the non-specific TF-binding
sites and by the standard free energy increment upon specific
binding of TFs to the DNA compared with non-specific binding.
We assume that TF binding is strongly driven by the free energy
(εTF ≈ 14) compared to RNAP binding (εRNAP ≈ 2; see Table 1
and Lassig, 2007).

(iii) The regulation free energy which is specified by the change of
the free energy increment of specific RNAP binding induced
after binding of TF to the regulatory region. It either activates
(εR > 0) or represses (εR < 0) specific RNAP binding.

The total effect of TF binding on the promoter occupancy
depends on the TF-binding activity (ii) and the regulation term
(iii) as well. It is considered using the regulation factor approach
introduced by Bintu et al. (2005) (see Eqs. (6) and (7) and Fig. 4a).
Regulation modifies the recruitment of RNAP to the promoter
which is equivalent with the change of the binding activity of RNAP.
Repressors and activators are characterized by the sign of the reg-
ulation free energy as suggested by Lassig (2007), see (iii) above. In
consequence the occupancy of the promoter is increased (regula-
tion factor F > 1) or decreased (F < 1) compared with the basal level
(F = 1).

Eq. (7) provides the regulation factor for the special case of single
regulators acting on the particular promoter. For the more general
case of k mutual independent regulators one gets the total regula-
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Fig. 3. Statistical properties of the RGM: (a) the mean length of the genes and of their regulatory region increase exponentially with the length of the promoter motif. The
arrows indicate the mean gene length for Lprom = 5 and 7. The difference between 〈Lgene〉 and 〈Lreg〉 can be neglected for Lprom > 3. (b) Distribution of the length of the regulatory
region wreg (Lreg ) in dependence of Lprom . (c) IN-degree win(k) and OUT-degree wout(k) distributions for a genome of size Lgenome = 105. wout(k) follows a binominal distribution
(Eq. (12)) whereas win(k) is an exponential decay (Eq. (13)). (d) The mean number of TF-binding sites per gene in the genome is determined by the genome size and the length
of the promoter motif (Eq. (4)). 〈Nbind〉 characterizes the connectivity of the genome.

tion factor as the product of the individual ones (Lassig, 2007):

F(k) =
k∏

i=1

F(Xi
TF , εi

r) with F(Xi
TF , εi

r) =
(

1 + Xi
TF exp(εi

r)

1 + Xi
TF

)
(14)

Each individual regulation factor F(Xi
TF , εi

r) considers the effect
that exerts one bound TF on the promoter occupancy. It is governed
by the binding activity and regulation free energy of the ith TF (see
Table 1). The total regulation factor F(k) then substitutes the indi-
vidual one in Eq. (8) to get the regulated promoter occupancy as a
function of the number of regulators k:

�gene(k) = F(k) · X0

1 + F(k) · X0
(15)

Eqs. (14) and (15) describe the regulation of one particular gene
by k arbitrary regulators where each of them is characterized by its
individual regulation free energy and TF activity.

Let us assume that the k regulators per promoter split into j
repressors and (k − j) activators which act both with the same abso-
lute value of the regulation free energy εr. Eqs. (14) and (15) rewrite
for this particular case into

�gene(k, j) = F(k, j) · X0

1 + F(k, j) · X0
and

F(k, j) = F(〈XTF 〉, −εr)j · F(〈XTF 〉, +εr)k−j (16)

The mean promoter occupancy averaged over all genes with k
regulators is

�(k) =
∑

j

p(k, j) · �gene(k, j) (17)

where p(k, j) is the probability that a gene is regulated by j repres-
sors and k − j activators.

We assume direct proportionality between promoter occupancy
and gene expression which is scaled in dimensionless units of TF
activity XTF (see Eq. (6) in Table 1). The proportionality constant
Xmax

TF defines the maximum possible expression referring to maxi-
mum promoter occupancy � = 1 (Eq. (9)).

It implies steady state of TF expression and degradation in the
genome. Note that XTF is proportional to the number of transcribed
TF (Eq. (6)).

2.4. Mean expression approximation

The intrinsic structure and connectivity of a particular ran-
dom genome is characterized by the size relations (Table 1)
and by the OUT- and IN-degree distributions. The analytical
expressions (Eqs. (12) and (13)) are approximations referring to
condition (10). To validate these approximations we compare
the analytic IN- and OUT-degree distributions with simulated
ones (panel c of Fig. 3). For this purpose random genomes
were generated according to the rules given in Section 2.1.
The respective IN- and OUT-degree distributions are then cal-
culated and averaged over 1000 independent realizations of the
genome. The comparison of analytic and simulated distributions
provides good agreement which justifies the used approxima-
tions.

For calculating the expression values in a particular genome
it is important to recall that the regulation factor is a func-
tion of the number of transcribed TF (see Eq. (6)) which, in
turn, is determined by the promoter occupancies of the genes
that transcribe the respective TF (Eq. (9)). Hence, the regula-
tion of the genes determines their rate of transcription and vice
versa.
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Fig. 4. Thermodynamics of genomic regulation: (a) RNAP (RNA-polymerase, R) distributes between free RNAP in solution and RNAP bound to specific and non-specific binding
sites. Specific binding is accompanied with a free energy increment of εRNAP (in units of thermal energy, kT). The basal promoter occupancy, �0, defines the probability that a
RNA-polymerase (R) molecule specifically binds to the promoter (P) and initiates transcription. The basal promoter occupancy switches between 0 and 1 with an inflection
point given by the basal RNAP binding activity X0 = 1 (i.e. log X0 = 0). (b) The promoter occupancy is regulated by transcription factors (T) which bind to TF-binding sites (B)
in the regulatory region according to a binding equilibrium of free and bound (specifically and non-specifically) TF molecules (εTF is the free energy increment). TF binding
changes the binding free energy of RNAP to the promoter by εr which, in turn, affects the promoter occupancy. In consequence the inflection point of the promoter occupancy
shifts towards smaller or larger values of the RNAP binding activity for activators and repressors, respectively.

We applied a mean expression approximation to obtain a self-
consistent solution of this feedback problem in the regulatory
network generated by the RGM: Accordingly, the promoter occu-
pancies of all genes are pooled into one mean occupancy level of
the considered genome. This step is equivalent with calculating
the weighted sum of the occupancy Eq. (15) over the number of

regulators k with the in-degree distribution Eq. (13) as weighting
factor:

〈�〉 =
∑

j

win(k) · �(k) (18)
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Fig. 5. Promoter occupancy as a function of the basal RNAP binding activity in pure activator and pure repressor systems (panel a) and the corresponding expression profile
calculated according Eq. (20) (panel b). Note the asymmetry of activation and repression branches due to the Boltzmann factor of regulation free energies of equal absolute
values in Eq. (7).

The mean occupancy of the promoters in the genome transforms
into the mean TF-binding activity according to the scaling condition
(Eq. (9)):

〈XTF 〉 = Xmax
TF · 〈�〉 (19)

It equally applies to all TF. The particular value of 〈XTF〉 is
obtained by numerical solution of Eqs. (18) and (19).

To validate the mean expression approximation in terms of the
resulting distribution of expression values we generated genomes
as described above and calculated expression spectra as averages
over 1000 independent realizations. Note that the genes in these
simulations are regulated according to the individual expression of
each TF. Comparison of simulated and calculated expression distri-
butions justifies the mean expression approximation. A particular
example is given below (see part b of Fig. 7).

2.5. Expression spectra

The expression profile of the genome is defined as the proba-
bility distribution of the expression values of all of its genes. We
will use the term ‘expression spectrum’ as synonym because the
term ‘expression profile’ is often used in a different, more unspe-
cific meaning in expression analyses to designate a characteristic
set of expression values. To obtain the expression spectrum one has
to correlate the probability of all possible regulatory states of the
genes in the genome with their promoter occupancies. The proba-
bility of the regulatory states is given by the IN-degree distribution,
win(k), which has been derived as a function of the number of reg-
ulators k (Eq. (13)). On the other hand, k governs the promoter
occupancy �(k) and thus the expression. Thus, the expression spec-
trum is given by win(k) as a parametric function of �(k) with k as
the parameter. In this subsection we discuss two special cases of
promoter regulation in order to illustrate the properties of the RGM
in terms of the resulting expression spectrum.

2.5.1. Regulation by separate repressors and activators
In this special case all genes are exclusively regulated either by

activators or by repressors. The probabilities in Eq. (17) apply with
j = 0 (only activators) and j = k (only repressors), respectively.

Fig. 5 shows the promoter occupancy as a function of the basal
RNAP binding activity (panel a), and the corresponding expression
profiles (panel b) for activators (orange) and repressors (violet). The
superposition of both branches can be assigned to genomes which
consist of equal number of genes which are regulated either by
activators or repressors.

The expression spectrum can be derived in analytical form for
this special case: first, one expresses k as a function of the promoter
occupancy � by re-arranging Eq. (16) into k = ln(F)/ln(F(XTF, εr)) and

then substitutes the regulator strength F as function of the � (Eq.
(16)). Secondly, insertion into Eq. (13) transforms the exponential
decay of the IN-degree distribution into a power law of the form:

win(�) =
(

X(�)
X0

)−�

· (1 − e−1/k0 ) with X(�) ≡ F · X0 = �

1 − �

and � = (k0 · ln(F(〈XTF 〉, εr)))−1 (20)

The maximum of the spectra shown in Fig. 5b corresponds to the
basal level of expression obtained for spontaneous ‘unregulated’
binding of RNAP (�0 = X0/(1 + X0)). The exponent � determines the
slope of the flanks of the expression spectrum. Its value is inversely
related to the characteristic decay number k0 and the individual
regulation factor F(〈XTF〉, εr). The sign of � is given by the sign of
ln F(〈XTF〉, εr) which is negative for repressors (F < 1 → ln F < 0) and
positive for activators (F > 1 → ln F > 0) giving rise to a power law of
increasing and decaying slope, respectively.

Activation of expression is more efficient than repression in the
chosen example, i.e. the absolute value of the slope of the right flank
of the spectrum is smaller (see Fig. 6). This property reflects the
asymmetry of the Boltzmann factor for exponents of the same abso-
lute value but of opposite sign. Saturation and thus deviation from
the power law is observed if the promoter occupancy approaches
its maximum value of unity.

The equation for the decay exponent of the expression spec-
trum can be simplified for the special case of well-connected
networks (〈Nbind〉 > 1, see Eq. (13)) and strong mean TF-binding
activity (〈XTF〉 
 1, see Eq. (7)) which is equivalent with large values
of promoter occupancy and TF expression (Eq. (19)). Under these
conditions � can be approximated y:

� ≈ (〈Nbind〉 · εr)−1 (21)

Accordingly, the absolute value of � and thus the steepness of
the flanks of the expression spectrum are large for genomes of low
internal connectivity characterized by small values of 〈Nbind〉 and/or
for weak regulatory effects per bound TF characterized by small
absolute values of εr.

The impact of the particular model parameters on the expres-
sion profiles is demonstrated in Fig. 6. A decrease of X0, the basal
RNAP binding activity, shifts the position of the peak to lower val-
ues (Fig. 6a). A decrease of XTF, the TF-binding activity, increases
the steepness of the flanks (Fig. 6b). Note that the repressor system
is more sensitive for changes of XTF. In the limit of large values of
XTF the spectrum becomes symmetric as predicted by Eq. (21). The
respective approximation of strong TF-binding activity and expres-
sion obviously applies to the right flank for log XTF > −1 but for the
left flank only for log XTF > +1. This difference can be simply ratio-
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Fig. 6. Changes of the expression spectrum of separated activator and repressor genomes upon variation of the basal RNAP binding activity (panel a), of the TF-binding
activity (b), of the regulation free energy which modifies the recruitment of RNAP to the promoter (c) and of the genome size which changes the mean number of bound TF
per gene (d). The arrows point in direction of the changes which are induced by the decrease of the value of the respective parameter.

nalized by the fact that the right flank refers to activated genes
giving rise to a higher expression level than the left flank due to
repressed genes. Panel c of Fig. 6 illustrates that a decrease of the
absolute value of εr, the regulation free energy, increases the slopes
of the flanks. In this case the right activation flank responds more
sensitively owing to the asymmetry of the Boltzmann factor as dis-
cussed above. The steepness of the slope of the curves decreases
with decreasing mean number of TF per gene 〈Nbind〉 (Fig. 6d). This
trend is achieved by decreasing the genome size or by increasing
the length of the coding region (see Eq. (4)). Panel c and d of Fig. 6
thus illustrate the trends due to changes of εr and 〈Nbind〉 predicted
by Eq. (21). With respect to invariant values of the decay exponent,
the decrease of regulation free energy εr can be compensated by
the increase of network connectivity 〈Nbind〉 and vice versa.

2.5.2. Regulation by combinations of repressors and activators
In this special case the genes are regulated by combinations

of activators and repressors acting independently with identical
absolute values of the regulation free energies (i.e. |εr| = const). The
respective probability distribution p(k, j) in Eq. (19) becomes the
binomial distribution:

p(k, j) =
(

k
j

)
· (fR)j · (1 − fR)k−j (22)

where fR denotes the fraction of repressors in the genome.
Panel a of Fig. 7 compares the expression spectrum of the binom-

inal mixture of equal numbers of repressors and activators (fR = 0.5)
with the spectra of single repressor (fR = 1) and activator (fR = 0)
genomes. Note that for a defined number of regulators each pos-
sible combination of repressors and activators contributes to the
expression spectrum of the binominal mixture (Eq. (22)). In Fig. 7a
each thin line refers to a fixed number of regulators (small numbers)
and the symbols indicate the probability of the possible combina-
tions. Their envelope refers to the total spectrum (thick lines). In
our analytical solution we calculated binominal combinations up
to k = 50.

The probability density is obtained by binning the individual
values of the discrete probability distribution into equally space
intervals on the logarithmic scale. Comparing the results of the
mean expression approximation with those of explicit simulations
of the RGM we found a good agreement. Results are shown in panel
b of Fig. 7 for systems with fR = 0.5 and 0.73. The slope of the left
repression flank clearly decreases whereas that of the right activa-
tion flank shows the opposite tendency with increasing fraction
of repressors. This trend generalizes the result discussed above,
namely that stronger regulation flattens the slope of the respec-
tive flank of the spectrum and vice versa (see Eq. (20)). The linear
shape of the flanks in the double-logarithmic plots indicates their
power law character in analogy with the single repressor and acti-
vator systems discussed above. Eq. (21) can be adapted to the case
of combinations of both types of regulators by scaling the mean
number of bound TF by the effective fraction of repressors f eff

R and

activators f eff
A contributing to regulation:

�left/right ≈ (f eff
R/A

· 〈Nbind〉 · εr)
−1

with f eff
R/A

≈ (1 − 〈Nbind〉 ln(fR/A))−1 (23)

A decreasing fraction of repressors fR decreases f eff
R and increases

� for the left flank. Vice versa it increases f eff
A and decreases � for

the right flank. As indicated by the indexing in Eq. (23) the effective
fraction f eff

R/A
consequently refers either to repressors or to activators

if one uses the decay constant of the left or right flank, respectively.
The approximation given in Eq. (23) assumes that the right and left
flanks are determined by the expression of genes that are regulated
solely by activators and repressors, respectively.

So far we assumed identical absolute values of the regulation
free energy of activators and repressors. More realistic applications
require regulation free energies which might vary specifically from
regulator to regulator and from gene to gene. As an example panel
c of Fig. 7 plots the spectra of binominal mixtures of repressors
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Fig. 7. Expression spectra of binominal mixtures of repressors and activators. (a) Comparison of the spectrum of a genome in which each gene is regulated by equal numbers
of repressors and activators on average (fR = 0.5) with genomes in which the genes are regulated solely by one type of regulators. The thin lines refer to all combinations
of repressors and activators for particular values of k = 1. . .9 which are summed up to provide the expression spectrum of the respective genome (see Eqs. (17) and (22)).
(b) Comparison of the simulated spectrum and the respective numerical calculation for a genome which is dominated by repressors (fR = 0.73). Decreasing the fraction of
repressors (fR = 0.5) mostly affects the right activator flank (see arrows). (c) Simulated spectra (fR = 0.5) assuming different fold ratios m = |εr(repressor)/εr(activator)| of the
regulation free energies of repressors and activators. (d) Simulated spectra of genomes where a single type of activators was combined either with a single type of repressors
(symbols) or with two equal-distributed types of repressors (lines). In case that the mean regulation free energy of the repressors in two systems is identical, for example,
0.75 = (0.5 + 1.0)/2, the spectra of both systems well agree demonstrating that their shape is determined by the effective regulation free energy.

and activators acting with different fold ratios of their regula-
tion free energies, m = |εr(repressor)/εr(activator)|. The increase of
m increases the steepness of the right and decreases that of the
left flank. A further example compares the expression spectra of
genomes regulated by one type of repressors with that of genomes
regulated by two types of repressors (panel d of Fig. 7). In case
the regulation free energy of the former case and the mean regula-
tion free energy of the repressors in the latter system are identical,
the resulting spectra of both genomes match each other nearly
perfectly.

These examples show that, in general, the decay constant can be
assumed to be governed by an effective value εeff

r which substitutes
the individual value εr in Eq. (23):

�left/right ≈ (f eff
R/A

· 〈Nbind〉 · εeff
R/A

)
−1

with εeff
R/A

≈
∑

i ∈ R/A

wi · εi
r (24)

The effective free energy can be approximated by the weighted
average over the regulation free energy of the regulators for small
variations of their values.

In conclusion the RGM approach gives rise to expression spec-
tra the flanks of which decay according to power laws also
for more heterogeneous situations such as combinations of dif-
ferent numbers of activators and repressors and/or of different
gene-specific regulation free energies. The characteristic power
exponents are inversely related to effective values of the fraction
of regulators and of the regulation free energy where the left and
right flanks characterize repression and activation, respectively.
The RGM leaves ample space for more specific interaction mod-
els assuming, for example, sequence dependent regulation free
energies.

3. Data analysis: extracting expression spectra from
microarray intensities

The microarray technology enables to estimate the ‘expression
degree’ of thousands of different transcripts in a given RNA extract
in one measurement. The basic principle of microarray experiments
relies on the hybridization intensity measurement for an individual
probe to infer the transcript abundance specific for a selected gene.
The detected intensities are affected by parasitic effects such as
non-specific background hybridization and saturation of the probe
spots with bound targets which are either not related to the abun-
dance of the transcripts of interest and/or which give rise to a
non-linear relation between transcript concentration and inten-
sity. The raw intensities therefore require calibration to obtain
appropriate expression measures. Fig. 8 shows the raw intensity
distribution (panel a) of a Drosgenome DG-1 GeneChip array and
the distribution of expression values after calibration of the raw
intensities using the so-called hook method (Binder et al., 2008,
2009; Binder and Preibisch, 2008). This algorithm corrects each
probe intensity for its sequence specific non-specific background
hybridization, its specific binding affinity and for non-linear sat-
uration effects and summarizes the intensity values of all probes
interrogating the same transcript into one expression value, LS,
which is linearly related to the transcript concentration in the stud-
ied mRNA extract. The background correction strongly affects small
intensity (and expression) values whereas the saturation correction
is important in the range of large intensity (and expression) values.

The single-peaked intensity distribution transforms into a dou-
ble peaked distribution of expression values after calibration
(compare panel a and b of Fig. 8). The left maximum can be
attributed to so-called ‘absent’ genes without transcribed mRNA.
The respective N-peak is caused by non-specific hybridization of
transcripts the sequence of which partly mismatches the respec-
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Fig. 8. Transformation of the intensity distribution into the distribution of expression values: (a) distribution of raw intensity values of perfect match (PM) probes of a
drosgenome DG1 GeneChip array (data set no. 1; see Table 2). The spikes at the left and right end are due to optical background and optical saturation, respectively. (b)
Distribution of expression values after calibration of the intensity values using the hook method (Binder and Preibisch, 2008). (c) The two peaks are attributed to non-specific
(N) and specific (S) hybridization of ‘absent’ and ‘present’ genes. The fraction of absent genes interrogated by the used chip is %N = 63%. For spectral decomposition we assume
mirror symmetry of the N-peak, reflect its left flank at the ordinate and subtract these values from the total spectrum. (d) The obtained distribution of expression values
with logged y-axis and normalized x-axis, log XS = log(LS/M) (XS—specific binding strength, LS—linearized expression in intensity units, M—maximum saturation intensity
of the probe spots). (e) The flanks of the density distribution decay linearly over a range of about 1–2 orders of magnitude in the log density-versus-log expression plot
which is equivalent with a power law of the form ∼(XS)−� . Exponential decays of the form ∼exp(−XS) clearly fail to describe the data (F-test: p < 0.01). The hatched areas
assign regions prone to measuring artefacts due to the N-correction and saturation and/or to model inconsistencies presumably due to the heterogeneous superposition of
expression spectra of different sub-networks (see text). (f) The same as panel (e) but for data set no. 3.

tive probes. Contrarily, the right S-peak originates from genes with
‘present’ transcripts the probes of which are hybridized specifically.
For decomposition of both peaks we assume mirror symmetry of
the N-peak with respect to its maximum position, reflect the left
flank to the right and subtract the respective values from the total
distribution of expression values to obtain the probability density
distribution of expression value as shown in panel c and d of Fig. 8.

The expression axis is either scaled in units of signal inten-
sity (LS) or of specific binding strength of probe/target association
(XS = LS/M, M is the saturation intensity of the probe spots). Both
scalings are proportional to the transcript concentration [S], for
example, XS = [S]·KS, where KS is the mean specific binding con-
stant averaged over all probes of the chip. The estimation of its
values requires additional experimental adjustment. We note that
the transformation of XS (and of LS) into units of promoter occu-
pancy used in the theoretical part requires also normalization with
respect to the total amount of extracted mRNA used in the partic-
ular hybridization. Both issues are beyond the scope of the present

publication. The scaling of the logged expression axis is therefore
uncertain except for an additive constant relative to the promoter
occupancy. On the other hand, a very similar value of this constant
can be assumed for samples which are studied using the same pro-
tocol for RNA extraction and preparation and the same GeneChip
technology for hybridization which allows the direct comparison
of the obtained expression spectra.

Previous analyses report monotonously decaying power law
distributions of expression values (Furusawa and Kaneko, 2003;
Nacher and Akutsu, 2006; Ueda et al., 2004). Before curve fitting
we have however to recall that the expression values and thus also
their distributions are prone to artefacts in the limits of large and
small abscissa values owing to insufficient correction for effects
such as saturation of the probe spots and the overlap with the N-
peak. We also emphasize that the obtained experimental density
distributions refer to whole genome expression data of hetero-
geneous samples extracted usually from a mixture of cell types
referring to a distribution of phenotypes. They can be interpreted
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as the superposition of ‘elementary’ expression spectra where each
of them refers to a subnet of genomic regulation in the sense of the
RGM. The superposition of such elementary spectra with varying
positions and decays then leads to heterogeneous broadening of
the observed total expression spectrum. The affected regions of the
spectra around the peak and along the tails have to be excluded
from the decay analysis. These restrictions narrow the range avail-
able for comparison with theoretical predictions as indicated by the
hatched areas in panel e and f of Fig. 8.

The experimental part of this study intends to illustrate that (i),
the experimental expression spectra exhibit essentially the same
qualitative single-peaked features as predicted by our simple the-
ory, and that (ii), the slopes of the flanks and the position of the
peak can vary with the biological context.

Visual inspection of the examples shown in Fig. 8 clearly reveals
that the available range of the left and right flanks of the extracted
S-peak can be described using a power law over 1–2 orders of
magnitude. The adequacy of this choice is confirmed by reduced
�2-values of 1.5–2 for curve fits to the examples shown (number of
data points per decay >50). We also tested exponential laws which
however clearly fail to fit the decaying and increasing branch of the
spectra compared with the respective power law (p-value: p < 10−2;
F-test with F-values: F > 4; see the examples shown in Fig. 8e and
f). Single fits of the power law provide a relative error of less than
2% (95% confidence level) for estimates of the characteristic power
constant �. This uncertainty however increases after considering
replicated measurements and taking into account the somewhat
arbitrarily chosen range of the flanks of the spectra: As a rule of
thumb, the characteristic power constant � was estimated with a
relative accuracy of 10–20% which is an adequate error limit for the
qualitative discussion given in the next section.

Previously published distributions of expression values show
no distinct maximum in contrast to our data. Detailed inspec-
tion however reveals that the published distributions deviate from
the power law in negative direction at small expression values
and often exhibit saturation behavior (Ueda et al., 2004). Note
that we chose an abscissa of logged expression values for the
finally obtained expression spectrum where the density refers to
equally spaced bins, �i

LOG = ni/(N · �i log LS) (i denotes the bin-
index, ni is the number of genes per bin, N their total number
and �ilog LS = const is the bin-width; see panel c and d of Fig. 8).
The cited authors used an abscissa which linearly relates to the
expression values and applies equally spaced bins �iLS = const to
get the density �i

LIN = ni/(N · �iLS). The bin-widths of both dif-
ferent scales transform into each other according to �i log LS =
�iLS · ∂(log LS)/∂LS ∝ �i log LS/LS . For the densities one gets �i

LIN ∝
�i

LOG/LS . Both scales provide different power laws, namely �i
LOG ∝

(LS)−�LOG and �i
LIN ∝ �i

LOG/LS = (LS)−�LIN , where the ‘linear’ expo-
nent exceeds the ‘logged’ one by unity:

�LIN = �LOG + 1 (25)

In other words, power laws decay steeper in linear scale than
in logarithmic one. On the other hand, small positive slopes of the
left, increasing flank of the expression spectrum with 0 > �LOG > −1
transform into flat decays with 0 < �LIN < +1 in linear scale in agree-
ment with the observed saturation behavior at small expression
values (Ueda et al., 2004). Hence, logarithmic scale virtually ampli-
fies the left, repression flank of the spectrum compared with linear
scale.

In addition to the chosen scale, the obtained distribution of
expression values is sensitively affected by the applied prepro-
cessing method which transforms measured probe intensities into
expression values. Particularly, the behavior of the distribution at
small expression values strongly depends on the applied correc-
tion method to remove intensity contributions due to non-specific

background hybridization. Global corrections which estimate one
common background value for all probes (such as Variance Sta-
bilization Normalization (VSN) and Robust Multiarray Analysis
(RMA), see Binder et al., 2009 for a mini review) typically underes-
timate the non-specific background and therefore overestimate the
expression level at the left boundary of the distribution. Moreover,
insufficient background correction gives rise to the overestimation
of the number of low expressed genes because a certain number
of absent probes are counted as expressed ones. The respective
expression distributions are therefore imprecise especially at small
expression values. Contrarily, probe-specific background correc-
tion methods which estimate individual background values for
each probe such as MAS5 and gcRMA deliver expression values
with much better resolution in the limit of low expression however
typically on the expense of larger stochastic noise.

The hook method also applies this probe-specific background
correction in combination with a strict criterion for ‘absent’ probes
the specific expression of which is judged as not detectable by the
applied microarray technology (Binder and Preibisch, 2008). This
detection threshold virtually removes the absent probes from the
expression distribution and results in a peaked distribution with a
maximum at intermediate expression values which is in qualitative
agreement with the distribution predicted by the RGM.

Note that adequate correction requires deconvolution of the
total intensity distribution according to P(I) = N⊗S where ⊗ denotes
the convolution product of the distributions of the non-specific
background and of the specific signal. A deconvolution algorithm
by Havilio (2005) provides expression distributions which show
a maximum at intermediate expression values in agreement with
our results. The discussed method applies however a global back-
ground correction with the limitations for small expression values
discussed above. In conclusion, the reported shape of the obtained
expression distributions at small abscissa values must be judged
as a rough estimation. We expect considerable improvement by
combining the deconvolution method with the probe-specific
background correction applied by the hook method which is cur-
rently in development.

4. Expression spectra: experimental examples

We select a series of example data sets to illustrate the prop-
erties of expression spectra in the context of different biological
issues, treatments, systems and taxa (see Table 2 for an overview).

4.1. Development and cell differentiation

As a first example we analysed time series characterizing devel-
opmental and differentiation processes. The Drosophila data set
comprised three replicated series of 12 consecutive time points of
chip measurements starting at 1 h and ending at 12 h post-egg lay-
ing of the flies. The left panel of Fig. 9 shows the mean expression
spectra averaged over the replicates for six selected developmental
stages of the fly embryos. Three phases of transcriptional activity
can be distinguished. During the first 5 h of development (until the
onset of gastrulation) the position of the expression spectra shifts
leftwards indicating the decrease of the mean expression level.
Subsequently, it remains stable over about 5 h (phases of post-
blastoderm mitosis) before the expression level again increases
after about 11 h of development (head involution, dorsal closure,
closure of the midgut). In this third phase the slope of the left
flank becomes smaller and thus the profile broadens. In terms of
our model this indicates an increase of transcriptional repression.

A comparable scenario was observed during the differentia-
tion of murine hematopoietic progenitor cells (FDCP-mix cells).
The expression spectra of data set no. 2 averaged over 3 replicates
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Table 2
Overview of the example data sets.

No Experiment Further remarks GeneChip array (number of
probe sets)

Reference accessibility of chip
data (*.cel files)a

1 Drosophila melongaster
developmental time series

Fruit fly embryo development
stages L1–L16

Drosgenome DG-1 (∼14,000) (Tomancak et al., 2002)
ftp://ftp.fruitfly.org/pub/embryo
tc array data/

2 Differentiation time series of
hemopoietic stem cells

Growth factor induced
differentiation of FDPC-mix cell
line into megakaryocyte cells

Mouse genome U74av2
(∼12,500)

(Bruno et al., 2004) Personal
information

3 Stage specific profiling of
LIN-mutants of C. elegans

Embryonic and larvae stages L1
and L4 of wild type versus
mutants

C. elegans genome (∼22,500) (Kirienko and Fay, 2007) GEO:
GSE6547

4 Oncogenic pathway signatures Oncogene activated versus
control study on human
mammary epithelial cells

Human genome
HGU133plus2.0 (∼22,500)b

(Bild et al., 2006) GEO:
GSE3151

5 Human body index
transcriptional profiling

Transcriptional profiling of 90
human tissues

Human genome HG133plus2.0
(∼22,500)b

(Roth et al., 2006) GEO:
GSE7307

6 Transcriptional repression of E.
coli by arginine

Repression of wild type strain
and mutant

E. coli genome 2.0 (∼10,000) (Caldara et al., 2006) GEO:
GSE4724

7 Genome scale changes of the
transcriptional oscillator in
Saccharomyces cerevisiae

Expression profiling of budding
yeast in the reductive and
respiratory phases

Yeast genome 2.0 array
(∼5500)c

(Li and Klevecz, 2006) GEO:
GSE9302

8 Zebrafish embryonic retina
(Danio rerio)

Wild type retina,
microdissected tissue samples

Zebrafish genome (∼15,000) (Leung et al., 2007) GEO:
GSE5048

9 Chicken brain (Gallus gallus) Sexually dimorphic expression
before gonadal differentiation

Chicken genome (∼32,000) (Lee et al., 2009) GEO:
GSE12268

10 Different treatment of
Arabidopsis thaliana roots

Air and ethanol treatment of
wild type and mutants

A. thaliana genome ATH1
(∼22,500)

(Stepanova et al., 2007) GEO:
GSE 7432

a GEO abbreviates the web repository Gene Expression Omnibus accessible under http://www.ncbi.nlm.nih.gov/geo/. All shown spectra are averaged over three replicated
chip measurements except data set no. 10 for which only two replicates are available.

b The HG133plus2.0 array (55,000 probe sets) integrates the probe sets of the HG-U133A chip (22,000) and, in addition, the probe sets of the HG-U133B chip (23,000). In
our analysis we mask the probe intensity data taken from the latter chip because most of them are called absent.

c The yeast genome array contains probe sets to detect transcripts of the two most commonly studied species of yeast, S. cerevisiae (5744 probe sets) and Schizosaccharomyces
pombe (5021). In our analysis we mask the intensity data of the latter species.

clearly reveal down-regulation of gene expression during the first
4 h of growth factor induced differentiation (right panel of Fig. 9).
Subsequently, the profile remains constant until terminal differen-
tiated cells appear after about 24 h (Bruno et al., 2004). At this time
point the left flank of the profile starts flattening. Again this change

indicates an increased transcriptional repression. This is in agree-
ment with experimental findings that the progenitors co-express
several programs of lineage-affiliated gene activity most of which
are actively repressed in course of subsequent commitment and
differentiation (Bruno et al., 2004).

Fig. 9. Expression spectra of the Drosophila developmental series (left panel, data set no. 1) and differentiation time series of murine hematopoietic progenitors (right panel,
data set no. 2). The shift of the peak position is illustrated by the vertical curves which follow the peak positions of the spectra. The percentages of present genes are given
in the figure. The respective standard error is about ±4%. The dotted diagonal lines are power laws (∼(LS)−�) with the characteristic exponent given in the figure for selected
examples. They serve as a guide for the eye to estimate the steepness of the slopes of the increasing and decreasing flanks of the peaks.
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Fig. 10. Stage specific profiling of wild type and lin-35 mutants of C. elegans (left panel, data set no. 3). Oncogenic pathway signatures of human mammary epithelial cells
(right panel, data set no. 4). The shadowed region refers to small expression values of low resolution (expression <10).

The results obtained by analyzing data set no. 1–2 demonstrate
that specific states of development and differentiation correspond
to characteristic gene expression profiles. Thereby, early states are
characterized by higher mean expression values and late stages
by smaller slopes of the left flank of the prolife. The latter can
be associated with the occurrence of a larger number of actively
repressed genes. Note that transcripts of only ∼40% (data set no. 1)
and ∼55% (dataset no. 2) of all interrogated genes are detectable.
These percentages are virtually invariant in the analyzed data sets.

4.2. Mutants and oncogenic de-regulation

In a second series of examples we compared the gene expres-
sion profiles of wild type and mutant genomes. In data set no. 3
embryonic and larvae development stages of wild type nematode C.
elegans were compared with that of lin-35 mutants lacking pocket
proteins (left panel of Fig. 9). The expression spectra demonstrate
the shift of the mean expression level towards lower values in the
course of the development in wild type and mutant worms as well.
However the shift was found to be much weaker for the mutated
nematodes. This difference obviously reflects the developmental
lag due to the malfunction of many genes involved into develop-
ment. Note that up to 500 genes involved in larvae proliferation,
cell cycle regulation and neurological development are repressed
in the mutants (Kirienko and Fay, 2007).

Data set no. 4 provides oncogenic pathway signatures of human
mammary epithelial cell cultures (Bild et al., 2006). Five selected
pathways were permanently activated by adenoviral activation (c-
myc, E2F3, �-catenin, c-Src, H-Ras). The expression patterns of
the de-regulated cells were found to be highly specific for each
activated oncogenic pathway and clearly different from the con-
trol GFP-cells (Bild et al., 2006). The studied pathway signatures
included about 100–400 differently expressed genes compared
with the control. Comparison of the expression spectra showed
that oncogenic pathway activation is accompanied by a decreased
overall expression level for three of the five studied examples (right
panel of Fig. 10). In these cases the spectra shift in the same direc-

tion as observed upon differentiation (see right panel of Fig. 9). This
result is somewhat surprising because oncogenic transformation
was often related to de-differentiation processes.

The results obtained by analyzing data set no. 3 and 4 demon-
strate that mutations and selective pathway activations can induce
changes of the entire gene expression spectrum. The observed
changes reflect de-regulated functions of cell activity.

4.3. Tissue specific and metabolic variability

Data set no. 5 profiles gene expression of ninety distinct human
tissue types. We arbitrarily select 10 of them to illustrate tissue-
specific heterogeneity of the respective expression spectra (Fig. 11).
It has been shown that the variability of expression values within
tissues of the same type taken from different individuals was
relatively small compared with variability between tissues of dif-
ferent type which enables identifying gene expression differences
between tissues (Roth et al., 2006). Application of unsupervised
pattern recognition (principal component analysis and hierarchical
clustering) to normalized, i.e. relative expression values provides
tissue-specific expression characteristics related to organ function
(Roth et al., 2006). Our analysis of the gene expression spectra
reveals only small differences between the expression spectra of
the analyzed tissues indicating comparable transcriptional activity
in terms of the RGM.

However, the question remains whether tissue-specific func-
tional modes, for example in the course of de-regulated metabolic
activity may change these spectra. The following examples indi-
cate that such changes occur in simple organisms, but appear to
depend on whether these changes are environmentally induced or
intrinsically regulated.

For example, data set no. 6 provides expression values on gene
regulation of arginine biosynthesis in bacteria E. coli (left panel of
Fig. 12). The involved arg genes are not organized into one single
operon, in contrast to what was observed for several other path-
ways. Instead, the respective genes are scattered over different
chromosomal loci. Their expression is repressed by arginine to dif-
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Fig. 11. Human body index profiling of selected tissue types (data set no. 5).

ferent extents in a coordinated fashion through the action of the
arginine repressor ArgR (Caldara et al., 2006). The data set com-
pares gene expression of the wild type strain under partial and full
repression of arginine biosynthesis induced either by intracellu-
lar arginine only (partial repression, WT) or by added extracellular
arginine (maximum repression, WT). Additionally, a mutant strain
with genetically de-repressed arginine biosynthesis is analyzed
under the action of extracellular arginine (maximum repression,
mutant). Consistently both, de-repression by reduction of the argi-
nine level and genetic de-repression in the mutant strain cause the
shift of the spectra towards smaller expression values. The lower
mean expression is paralleled by the flattening of the slope of the
right decaying flank. The absolute values of the respective power
law exponent decrease (see Fig. 12). The flattening of the right
flank suggests the involvement of transcriptional activation in the
course of de-repression. To check this hypothesis we calculated the
mean expression value of the five arg genes argA, argB. . .argE which
are directly controlled by ArgR-repression (see the open triangles
in Fig. 12). Their mean expression level roughly agrees with the
mean expression level of all genes near the maximum position of
the expression spectrum in the repressed sample (WT + arg). De-
repression markedly gains the expression level of the arg genes

which are now beyond the most strongly expressed genes of the
bacteria. We conclude that arg genes are highly activated under
normal conditions but reduce their activity under conditions of
arginine excess of the wild type strain due to ArgR-repression.

Data set no. 7 provides data on the global gene expression
changes during respiratory cycle oscillations of budding yeast.
This cycle is characterized by genome wide oscillations of tran-
scription (Klevecz et al., 2004). Different temporal clusters of
maximum expressed genes have been identified during the reduc-
tive and respiratory phases consisting of about 89% and 12%
out of the about 5300 significantly expressed genes in the yeast
(Klevecz et al., 2004). This separation in time between oxidative
and reductive phases propagates throughout the transcriptome
and is coordinated with the initiation of DNA replication. This
temporal switch has been explained as an important strategy
evolved in cells to prevent oxidative damage to DNA during repli-
cation (Klevecz et al., 2004). Our data reveal that the overall
expression spectra of the reductive and respiratory phase appear
to be invariant (Fig. 12, right part). The expression changes of
individual genes are obviously balanced resulting in a relative con-
stant level of total gene activity during the respiratory cycle of
yeast.

Fig. 12. E. coli repression data set no. 6 (left) and S. cerevisiae data set no. 7 (right). In the left part the spectra referring to de-repressed arg biosynthesis (WT and mutant + arg)
are compared with the conditions of full repression (WT + arg): the arrows illustrate the left-shift of the spectra and the decreased slope of their decaying flank after de-
repression. The open triangles indicate the mean expression value averaged over the five arg genes (argA, argB, argC, argD, argE) which are regulated by the ArgR repressor.
The expression spectra of the yeast are virtually invariant during the respiratory phase cycle (right part). Note also the exceptional high percentage of present genes in yeast
compared with other organisms.
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Fig. 13. Expression spectra of different species. Representative expression distri-
butions are taken from data sets 5, 8, 9, 2, 7, 10 and 6 (from bottom to top). The
activation flank of the spectra decays according to Zipfs law, i.e. a power with a
decay exponent near unity.

4.4. Gene expression from bacteria to human

We selected example data sets which investigate organisms
taken from different biological kingdoms and phyla: bacteria (E.
coli), unicellular eukariotes (Saccharomyces cerevisiae) and multi-
cellular eukaryotic animals (C. elegans, zebrafish, chicken, human)
and plants (Arabidopsis thaliana). Fig. 13 directly compares rep-
resentative expression spectra which have been selected from
the examples which used whole genome expression arrays of the
GeneChip type of the same generation. Partly, the spectra differ
markedly among each other in width (see, e.g. E. coli showing a
relatively narrow distribution of expression values compared with
the other examples) and/or position (see, e.g. S. cerevisiae show-
ing a large mean expression level). These different characteristics
exceed the variability of the spectra of the same type of organ-
isms for different treatments and individuals (compare with the
preceding examples).

The right activation flank decays in all cases with a power law
exponent � near unity which is characteristic for Zipfs law (Zipf,
1949). The exponent is in agreement with previous experimental
findings of power laws of expression data in linear scale (Furusawa
and Kaneko, 2003; Ueda et al., 2004). The reported decay exponents
of about two (Ueda et al., 2004) become unity after rescaling into
logged scale according to Eq. (25).

Using the estimated value of the decay exponent of about unity
Eq. (24) becomes f eff

A · 〈Nbind〉 · εeff
A ≈ 1. It implies that changes of the

network connectivity and/or the particular combination of regula-
tors are balanced by changes of the effective regulation free energy.
For example, the connectivity of TF regulatory networks increases
for higher organisms (1.2 edges per vertex in E. coli; 1.6 in S. cere-

visiae; more than 2 in mammals) (Goemann et al., 2009; Madan
Babu and Teichmann, 2003). This increased connectivity within
the genomes of higher organisms is consequently expected to be
paralleled by smaller effective regulation free energies and/or by a
smaller fraction of activators.

The expression spectra shown in Fig. 13 largely differ in the slope
of their left repression flank. The steeper increase of the left flank in
the spectra of the unicellular organisms indicates that the impact
of repression mechanisms in the regulation of gene activity seems
to increase in multicellular eukaryotes compared with bacteria and
yeast. Note that the similar trend was observed upon differentiation
and development (Fig. 9).

Potapov et al. (2008) showed that simple organisms such as
bacteria, yeast and also nematodes avoid significant parallelism
of regulatory paths in their gene regulatory networks in contrast
to higher level organisms such as mammalians. The RGM predicts
the narrowing of the spectrum for such less connective regulatory
networks in qualitative agreement with the measured expression
spectra. Vice versa, adaptation of genomic regulation to environ-
mental changes may be more heterogeneous and thus flexible for
higher organized species (Huang et al., 2005).

5. Summary and conclusions

We presented a statistical thermodynamics model of whole
genome transcriptional regulation which combines the RGM
approach of gene regulatory network organization with a bio-
physical description of gene activity. The gene expression of the
RGM is governed by transcription and binding of TF and by the
ability of bound TF to modulate the recruitment of RNAP by the
promoter regions of the genes. The basic size relations and dis-
tributions of TF binding of the model genome were presented.
Using these distributions together with the respective microstates
of promoter occupancy we calculated the expression spectra of
different genomes. Essential properties of these spectra were ana-
lyzed as a function of different input parameters. For this purpose
an analytical solution was derived based on a mean expression
approximation. This solution was demonstrated to provide results
in good agreement with explicit simulations of the RGM. We found
that the expression spectra respond in a characteristic way on dif-
ferent changes of the modes of transcriptional regulation.

Our model predicts a power law distribution of gene activity.
Repressors and activators of gene activity give rise to increas-
ing and decreasing tails of the distribution with a maximum in
between. This maximum is assigned to the basal transcriptional
activity of unregulated promoter states. The decay exponents of
the power laws are inversely related to the network connectivity
and the average strength of regulation. Hence, the position of the
expression spectra and the slopes of their increasing and decreasing
flanks provide a simple framework for the interpretation of experi-
mental gene expression spectra. For example, relatively steep tails
reflect modes of relatively weak regulation due to weak regulation
strengths of bound TF and/or due to low connectivity, i.e. a small
number of regulating TF per gene.

Previous studies of experimental expression data based on
state-of the art preprocessing methods reported monotonously
decaying power law distributions. Applying novel Hook data cali-
bration we demonstrated that the abundance of transcribed mRNA
measured with microarrays actually shows a single-peaked dis-
tribution in agreement with the shape of the expression spectra
predicted by our model. We found that peak position and width
of the experimental expression spectra vary with the biologi-
cal context. Particularly, changes of the spectra were found to
occur, e.g. during developmental processes as a consequence of
changed metabolisms and in the course of oncogenic transfor-
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mations, demonstrating that the spectra describe well-balanced
transcriptional modes.

The interpretation of the expression spectra in terms of the
RGM approach leads to explanations in agreement with existing
knowledge. For example, changes of the spectra during progres-
sive development and cell differentiation can be explained by an
increasing fraction of actively repressed genes in accordance with
general findings in developmental and stem cell biology (Efroni et
al., 2008). A similar trend was also found in multicellular eukary-
otes compared with unicellular bacteria and yeast, suggesting that
increased complexity in regulation is accompanied by fine-tuned
gene repression. Note that alternative mechanisms of repressing
gene activity such as DNA-methylation and Polycomb-binding have
a high impact on gene regulation during differentiation and devel-
opment (Meissner et al., 2008; Mikkelsen et al., 2007; Mohn and
Schuebeler, 2009; Simon and Kingston, 2009). Such epigenetic
effect will be addressed in extended versions of the RGM.

A decay constant of the observed power law of about unity was
found to be a universal property in different species. In our model
this decay constant characterizes the structure and the expression
regulation of the genome in terms of the connectivity and the effec-
tive regulation strength of TF. Other approaches explain the power
law by the optimization of self-reproduction of metabolic networks
in the cells (Furusawa and Kaneko, 2003) or by external and inter-
nal noise subjected to the transcription process and the kinetics
of transcript degradation (Nacher and Akutsu, 2006). Studying the
impact of noise in the context of the dynamics of genomic regula-
tion and the effect on the expression spectra predicted by the RGM
is an interesting issue of model extension.

Beside its potential in interpreting experimental expression
spectra the RGM represents a suited framework for integrating pre-
specified selected regulatory units at the genome level to study
their properties in the matrix formed by the entire network. This
approach can be applied, for example, to investigate the effect of
mutations and of pathway activation more in detail. First results
presented here suggest that both modifications are capable of
changing the expression spectrum of the whole genome.
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