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performance of RNA-seq across laboratories and to test different 
sequencing platforms and data analysis pipelines.

Here we report a multisite, cross-platform analysis of RNA-seq 
measurement performance in a controlled setting. We sequenced 
commercially available reference RNA samples spiked with synthetic 
RNA from the External RNA Control Consortium. Two distinct sam-
ples were assessed individually and also combined in known ratios. 
This allowed us to examine how well truths built into the study design, 
such as known relationships between samples within and across 
sites, could be recovered from measurements. With no independent 
‘gold standard’ feasible, these ‘known truths’ support an objective 
assessment of performance. To this end, we examined a multitude 
of properties, including complementary metrics of reproducibility, 
accuracy and information content. Such a multidimensional charac-
terization is critical for the development of more powerful analyses of 
the underlying biological mechanisms in complex data sets because 
often there is a trade-off between one desirable property and another, 
such as accuracy versus precision. Analyses focusing on measurement 
quality metrics11, spike-in controls and limits of detection47 and the 
effects of analytic pipeline choice are presented in separate studies 
(unpublished data).

The SEQC project also involved studies assessing RNA-seq in 
several research applications (Fig. 1a), including a performance 
analysis of neuroblastoma outcome prediction (unpublished data),  
a comparative investigation of toxicogenomic samples testing chemi-
cals with different modes of action12 and a comprehensive survey of  
tissue-specific gene expression in rat13. In total, >100 billion reads  
(10 terabases) of RNA-seq data were produced and studied, which to 
our knowledge represents the largest effort to date to generate and 
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Technological advances have made deep RNA sequencing feasible, 
expanding our view of the transcriptome1 and promising to permit 
quantitative profiling with large dynamic range2. Recent comparisons 
of RNA-seq with established technologies for differential expression 
analysis have found good overall agreement between RNA-seq, qPCR 
and microarrays. In general, RNA-seq has provided increased detec-
tion sensitivity and opened new avenues of research in transcriptome 
analyses, such as the study of gene fusions, allele-specific expression 
and novel alternative transcripts. However, it has been shown that 
RNA-seq data have measurement noise which is a direct consequence 
of the random sampling process inherent to the assay. Assessments 
of RNA-seq have been limited to individual sequencing platforms 
and experiments, which may explain the variation of conclusions  
by study (see Supplementary Table 1 and Supplementary Notes,  
section 2.4 for discussion)3–6. Moreover, new platforms and proto-
cols for RNA-seq have emerged in recent years. With the widespread 
adoption of RNA-seq, including the completion of large projects, 
such as the Encyclopedia of DNA Elements (ENCODE)7, The Cancer 
Genome Atlas (TCGA)8 and projects of the International Cancer 
Genome Consortium (ICGC)9, a comprehensive multisite, cross-
platform analysis of RNA-seq performance is timely. Reproducibility 
across laboratories, in particular, is a crucial requirement for any 
new experimental method in research and clinical applications, and 
can only be tested in extensive comparisons of different sites and 
platforms. As in phase I of the MicroArray Quality Control project 
(MAQC-I)10, which tested agreement across sites and platforms for 
gene-expression microarrays, the US Food and Drug Administration 
(FDA) has coordinated the Sequencing Quality Control project 
(SEQC/MAQC-III), a large-scale community effort to assess the 

SEQC/MAQC-III Consortium*

We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the US Food and Drug 
Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using 
reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and 
differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics.  
At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that 
measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used.  
In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed  
for all examined platforms, including qPCR. Measurement performance depends on the platform and data analysis pipeline,  
and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb),  
provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings.
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analyze comprehensive reference data sets. A rigorous dissection of 
sources of noise and signal indicates that, given appropriate data treat-
ment and analysis, RNA-seq can be highly reproducible, particularly 
in differential gene-expression analysis.

RESULTS
Study design
We used the well-characterized reference RNA samples A (Universal 
Human Reference RNA) and B (Human Brain Reference RNA) from 
the MAQC consortium10, adding spike-ins of synthetic RNA from the 
External RNA Control Consortium (ERCC)14. We then mixed A and B 
in known ratios, 3:1 and 1:3, to construct samples C and D, respectively 
(Fig. 1 and Supplementary Fig. 1). All samples were distributed to sev-
eral independent sites for RNA-seq library construction and profiling 
by Illumina’s HiSeq 2000 and Life Technologies’ SOLiD 5500 instru-
ments. In addition, vendors created their own cDNA libraries, which 
were distributed to each test site to examine ‘site effects’ independent 
of the library preparation process (Fig. 1b). To support an assessment 
of gene models, three sites also independently sequenced samples A 
and B using the Roche 454 GS FLX platform, providing longer reads. 
In total, for samples A to D, 108 libraries were sequenced on a HiSeq 
2000, another 68 libraries on SOLiD, and 6 libraries on a Roche 454.

To compare technologies, we also examined expression pro-
files of the same reference samples generated from Affymetrix 
HGU133Plus2.0 microarrays in the MAQC-I study, and profiled 
and analyzed these samples on several current microarray plat-
forms (Online Methods). Besides RNA-seq and microarrays, we 
also considered qPCR-based protocols. We examined 843 TaqMan 
assays from the MAQC-I study and, in addition, performed 20,801 
PrimePCR reactions.

Read depth dependency of gene detection and junction discovery
Because efficient quantitative expression profiling takes advantage of 
known gene models3 the choice of a reference annotation can con-
siderably affect results, including performance assessments. Our data 
showed that the number of reads mapped to known genes depends 
on the accuracy and completeness of the gene models. Among all 
23.2 billion reads that could be mapped to genes other than those 
encoding mitochondrial or ribosomal RNAs, 85.9% were mapped 
to RefSeq15, whereas 92.9% mapped to GENCODE16, and 97.1% 
to NCBI AceView17 (Fig. 2a). This is not a property of the samples 
examined (A, B, C and D), as a similar trend is seen when adding all 
reads from the SEQC neuroblastoma project (Supplementary Notes, 
section 1.2). The higher read fraction unique to AceView is genuinely 
due to the higher accuracy of its gene models (Fig. 2a,b), as AceView 
annotated exons cover fewer bases than those from GENCODE  
(191 Mb versus 203 Mb; Supplementary Notes, section 1.2).

As the data constitute the deepest sequencing of any set of samples 
yet reported and include a total of 12 billion mapped HiSeq 2000 
RNA-seq fragments, we examined how well the known genes could 
be detected as a function of aggregate read depth, taking all repli-
cate libraries, sites and samples together. We report read depth as the 
number of sequenced fragments because the mapping and counting 
of paired ends are highly correlated; single-ended reads can thus be 
used when the additional long-range information from read pairs 
is not required. At a sequencing depth of 10 million aligned frag-
ments, about 35,000 of the 55,674 genes annotated in AceView17 were 
found by at least one read. Some of these reads were due to back-
ground noise, for instance, from genomic DNA contamination (see 
Supplementary Notes, section 1.2). For a comparison of alternative 
pipelines, annotations and the effect of read depth, we next focused on 

Figure 1 The SEQC (MAQC-III) project and  
experimental design. (a) Overview of projects.  
We report on a group of studies assessing  
different sequencing platforms in real-world use  
cases, including transcriptome annotation and  
other research applications, as well as clinical  
settings. This paper focuses on the results of  
a multicenter experiment with built-in ground  
truths. (b–d) Main study design. Similar to the  
MAQC-I benchmarks, we analyzed RNA samples  
A to D. Samples C and D were created by mixing  
the well-characterized samples A and B in 3:1  
and 1:3 ratios, respectively. This allows tests for  
titration consistency (c) and the correct recovery  
of the known mixing ratios (d). Synthetic RNAs  
from ERCC were both added to samples A and  
B before mixing and also sequenced separately  
to assess dynamic range (samples E and F).  
Samples were distributed to independent sites  
for RNA-seq library construction and profiling  
by Illumina’s HiSeq 2000 (three official + three  
unofficial sites) and Life Technologies’ SOLiD  
5500 (three official sites + one unofficial site).  
Unless mentioned otherwise, data show results  
from the three official sites (italics). In addition  
to the four replicate libraries each for samples  
A to D per site, for each platform, one vendor- 
prepared library A5…D5 was being sequenced  
at the official sites, giving a total of 120 libraries. At each site, every library has a unique bar-code sequence, and all libraries were pooled before 
sequencing, so each lane was sequencing the same material, allowing a study of lane-specific effects. To support a later assessment of gene models,  
we sequenced samples A and B by Roche 454 (3×, no replicates, see Supplementary Notes, section 2.5). (c) Schema illustrating tests for titration 
order consistency. Four examples are shown. The dashed lines represent the ideal mixture of samples A and B expected for samples D and C.  
(d) Schema illustrating a consistency test for recovering the expected sample mixing ratio. The yellow lines mark a 10% deviation from the expected 
response (black) for a perfect mixing ratio. Both tests (c) and (d) will reflect both systemic distortions (bias) and random variation (noise).
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genes with strong support (16 or more reads). At this stringency, we 
found that about 20,000 genes were detected at a sequencing depth of 
10 million aligned fragments, which covered the majority of strongly 
expressed genes (Fig. 2c). Detection increased to >30,000 genes at  
100 million fragments, and finally to >45,000 at about one billion 
fragments. Although the number of additional known genes detected 
successively decreased for each doubling of read depth, additional 
genes were still being detected even at high read depths of >1 billion  
fragments, indicative of low expression levels per cell or small num-
bers of cells expressing these genes (Fig. 2c for HiSeq 2000 and 
Supplementary Fig. 2 for SOLiD).

We examined the detection of exon-exon junctions as a func-
tion of read depth for RefSeq, GENCODE and AceView annotation  
(Fig. 2d). In general, with each doubling of the read depth, many 
additional known junctions were detected for the more comprehen-
sive annotations, even at high read depths exceeding one billion reads. 
As samples A and B in the study are very different, we expected to see 
more transcriptional complexity when combining samples. Indeed, 
combining biologically distinct samples contributes more to explor-
ing the complex transcriptome space than merely increasing the 
total read depth (Fig. 2d)13. The number of additional known junc-
tions decreased fastest for RefSeq, which provides the least complex 
annotation (Supplementary Fig. 3), and so practically all annotated 

junctions were observed at the highest read depth. In contrast, the 
AceView database is the most comprehensive and has the highest 
number of junctions supported by reads from this study, reaching over 
300,000 junctions at the maximum read depth, more than three times 
the number detected at 10 million reads. Although GENCODE and 
AceView have similar total numbers of genes and similar footprints 
on the genome, considerably fewer annotated genes and junctions 
in GENCODE were supported by the observed reads (Fig. 2b and 
Supplementary Fig. 4). Therefore, all subsequent analyses presented 
in this manuscript are based on AceView, unless stated otherwise.

We next analyzed the reproducibility of detecting genes and  
junctions across measurement sites, platforms and analysis pipelines, 
as a key strength of RNA-seq is its inherent ability to identify splice  
sites de novo. To test this ability of RNA-seq to discover junctions,  
we first examined the HiSeq 2000 data because of the greater read 
length and depth. We considered three independent pipelines  
for de novo discovery of junctions independent of existing  
gene models: NCBI Magic17, r-make (which uses STAR18) and 
Subread19. All pipelines reported millions of junctions, with r-make 
predicting about 50% more than Subread and Magic, although almost 
all junctions found by Subread or Magic were also found by r-make. 
We also observed substantial but 12% lower agreement with TopHat2, 
regardless of whether it was run with or without gene model-guided 
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alignment20 (Supplementary Fig. 5a), giving a total of 1,110,550 
junctions consistently found by all five analysis variants. In total,  
2.6 million previously unannotated splice junctions were called by at 
least one of the five analysis pipelines, yet only 820,727 (32%) were 
consistently predicted by all the methods (Supplementary Fig. 5b), 
illustrating the considerable difficulty of reliably detecting splice  
junctions de novo with current analysis tools.

We then examined whether unannotated junctions were independ-
ently discovered in both HiSeq 2000 and SOLiD data, as junctions 
found only by a single platform or library preparation protocol could 
be technical artifacts (Supplementary Fig. 6). Junction discoveries 
from the SOLiD data reflected the lower read length and read depth as 
expected (simulation results in Supplementary Table 2). In particular, 
we discovered 87,117 unannotated potential junctions in the SOLiD 
data, of which 74,561 (86%) were also independently discovered from 
HiSeq 2000 reads using the Subread aligner. The number of these new 
junctions found in each of the four samples (Fig. 2e) followed the 
order expected corresponding to sample complexity: B < A < D < C.

We then used the built-in truths of the benchmark measurements 
to examine the accuracy of the sample-specific levels of support of the 
unannotated junctions in terms of their ability to capture the expected 
A/B sample mixing ratio and yield titration order consistency. For 
example (Fig. 1c), if a gene is more strongly expressed in sample  
A than in sample B (A > B) then we expect A > C > D > B because  

C = ¾ A + ¼ B and D = ¼ A + ¾ B, and we expect the inverse order 
if B > A. This consistency test is affected both by systemic distortions 
reducing accuracy and random variations reducing reproducibility. 
Another complementary test assesses the A/B mixing ratio recovery 
in samples C (3:1) and D (1:3), which can be examined in a plot of 
log2(C/D) versus log2(A/B). Deviations from the ideal line (Fig. 1d) 
are also affected by systemic distortions, which reduce accuracy, and 
by random variations, which reduce reproducibility. Because both 
tests only reflect reproducibility for genes with similar expression 
levels in samples A and B, we also require a clear differential signal 
as assessed by the ‘mutual information’, a measure of information 
content (Online Methods).

We observed that requiring a consistent titration order and the 
correct A/B mixing ratio clearly enriched for junctions with higher 
expression levels (Fig. 2f), which were the easiest to measure and 
quantify. A comparison with junctions detected in Roche 454 data 
confirmed that the more abundant junctions could reliably be detected 
across different sequencing platforms (Supplementary Fig. 7).

For an examination of how well junctions discovered by  
RNA-seq could be independently confirmed by a different technol-
ogy, we performed qPCR with primer pairs designed to specifically 
validate 173 detected junctions. Of these, 136 were randomly-selected 
well-supported junctions that had been discovered de novo by all three 
RNA-seq analysis pipelines in both HiSeq 2000 and SOLiD data. 
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These junctions were chosen so that they log-uniformly covered a 
range of ~10–3,000 supporting reads, and so that half of them met 
all consistency tests. In addition, we also tested 13 known AceView 
junctions as positive controls and 24 unannotated junctions that had 
been discovered only by a single analysis pipeline in the HiSeq 2000 
or SOLiD data, despite having support by many reads (~300–3,000). 
Only five assays were noninformative (Online Methods). Notably, in 
the remaining assays, all of the 13 positive controls and all of the 133 
well-supported junctions were reliably identified by qPCR, with the 
numbers of supporting RNA-seq reads largely reflecting estimates 
of expression levels by qPCR (slope 0.95, Pearson (Spearman) cor-
relation 0.74 (0.77), N = 146), even for junctions with low read num-
bers or not meeting all consistency tests (Supplementary Fig. 8). 
Moreover, 18 of the 22 pipeline-specific junctions (>80%) could be 
confirmed at least qualitatively. For the most comprehensive surveys  
of potential new junctions, one may therefore want to consider  
all discovered junctions, although it makes sense to prioritize well-
supported junctions found consistently (Fisher, P < 4 × 10−4).

In the complete data set comprising SEQC samples A, B, C and 
D, we consistently detected ~44,000 known genes (Fig. 2g) and 
~310,000 known exons across pairs of replicate sites (Supplementary 
Fig. 9), constituting about 79% and 47% of all known genes and 
exons, respectively. Nearly 200,000 splice junctions were seen con-
sistently (Fig. 2h), making up about 50% of all known junctions. 
This corresponds to about 90% of all detected known genes, 87% 
of detected known exons and 83% of detected known junctions,  
consistent with the explanation that larger features aggregating 
more reads are easier to measure reproducibly. The fluctuations in 
the detection of sequence features stemmed largely from sequenc-
ing depth–dependent sampling noise, which was reflected in the 
very similar intra- and inter-site agreements in the detection of 
known genes (Fig. 2g), exons (Supplementary Fig. 9) and junctions  
(Fig. 2h). Considering the low technical variance in addition to the 
unavoidable sampling noise, these results emphasize the value of 
biological replicates.

Improving differential expression analysis reliability
Studies on microarrays have shown that results of typical statistical  
differential expression tests thresholded by P-value need to be  
filtered and sorted by effect strength (fold-change) in order to attain 
robust comparisons across platforms and sites10. We thus sought 
to identify corresponding requirements for RNA-seq, examining 
the reproducibility of rank ordered lists of differentially expressed  
genes (DEGs), as well as the false discovery rate (FDR) reflecting 
the information content of the measurements. Because the same  
samples were profiled at all sites, the number of true DEGs is zero 
when comparing the same sample between any two sites. Any DEGs 
found for self–self comparisons thus represent technical differ-
ences and can be considered ‘false positives’ (Fig. 3a). We exam-
ined the number of inter-site A versus A ‘false positives’ relative to 
the number of DEGs in A versus B comparisons, giving an empiri-
cal estimate of the FDR (eFDR). We tested several RNA-seq data  
analysis pipelines for the six HiSeq 2000 sites, focusing on the set of 
23,437 genes present on the Affymetrix HGU133Plus2.0 microarrays 
for comparison.

We found that unfiltered data for both RNA-seq and microarrays 
show many DEGs, both for false positives (A versus A) and the likely 
‘real’ DEGs in the A versus B comparison (Fig. 3a), with the ratio 
of false positives versus true positives unacceptably high for both 
platforms (Fig. 3b). Also, we observed that different analysis pipe-
lines vary in these measures of performance (Fig. 3a–e). Next, we 
applied the |log2 fold-change|>1 filter advocated in the MAQC study 
on microarrays10, and for microarrays observed a reduction in the 
eFDR to below 1.5%, save for one outlier site (Fig. 3c,d). Notably, 
we found that applying pipeline-dependent filters for P-value,  
fold-change and expression-level (lowest third of all examined 
AceView genes, Supplementary Tables 3 and 4) successfully reduced 
the RNA-seq eFDR across sites without sacrificing sensitivity com-
pared to the arrays (Fig. 3d). We note that results for SOLiD were 
very similar (Supplementary Figs. 10 and 11), with expression level 
thresholds reflecting the lower read depth for that platform.
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Figure 4 Built-in truths for assessing RNA-seq. (a) Titration order A, C, D, B. Log2 fold-change is related to cross-platform titration consistency.  
At sufficiently strong log2 fold-change, reliable titration is also found across platforms. The dark blue line represents the 22,074 ‘unmissable’ 
genes showing the correct titration order with no contradiction in at least 14 HiSeq 2000 and 6 SOLiD samples. Most genes with high differential 
expression are in this class. (b) Known A/B mixing ratios in samples C and D. The yellow solid line traces the expected values after mRNA/total-RNA 
shift correction. The 1%, 10% and 25% most highly expressed genes are shown in red, cyan and magenta, respectively. On average, the most strongly 
expressed genes recover the expected mixing ratio best. Genes with inconsistent titration (cf. a) are colored gray. Black and gray symbols intermixing 
indicates that consistent titration (black) does not guarantee reliable recovery of the mixing ratio (and vice versa). (c) ERCC spike-in ratios can be 
recovered increasingly well at higher expression levels. From the response curves, one can calculate signal thresholds for the detection of a change46. 
(d) Variation of the total amounts of detected ERCC spikes. The lack of reliable titration indicates that the considerable differences between libraries 
of a given site and protocol are random, implying limits for absolute expression level estimates, in general, and using spike-ins for the calibration of 
absolute quantification, in particular. The observed variations likely arise in library construction, as the vendor-prepared libraries (colored cyan  
or gray) gave constant results across different sites. For a and b, all 55,674 AceView genes were tested.
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After applying these filters, we found that most (but not all)  
RNA-seq pipelines achieved high inter-site reproducibility of differ-
ential expression calls with up to 95% concordance in DEGs (Fig. 3e  
and Supplementary Fig. 12). This concordance between sites was 
highest for the most strongly expressed genes. Moreover, the filters 
resulted in a good agreement of differential expression calls across 
platforms (e.g., A versus B on HiSeq 2000 compared with A versus B on 
SOLiD, Supplementary Figs. 13 and 14), suggesting that differential  
expression analyses from different platforms can be combined—for 
example, to extend existing studies with additional samples.

Relative but not absolute expression measures satisfy tests
After an examination of the reliability of differential expression analy-
sis of genes, we next examined the quantification of RNA using four 
consistency tests exploiting ground truths built into the study design 
(Fig. 4). First, we considered titration-order consistency as introduced 
in Figure 1c. This metric is affected both by systemic distortions 
reducing accuracy and random variations reducing reproducibility. 
The majority of genes (59%) titrated correctly (Fig. 4a), with little dis-
agreement between platforms (Supplementary Table 5). Genes with 
large differential expression performed best, with all genes showing  
consistent titration in several HiSeq 2000 and SOLiD sites, and no 
contradiction regarding the direction of change (blue curve). For the 
second built-in truth, we examined the A/B mixing ratio recovery  
(Fig. 1d) as another test reflecting accuracy and reproducibility. We 
observed the correct ratio for the majority of genes (Fig. 4b), with 

better agreement at higher expression levels (top 25%). Notably,  
the scatter of genes marked as titrating in this plot indicates that con-
sistent titration does not guarantee a reliable recovery of the mixing 
ratio (and vice versa).

The third and fourth built-in truths leveraged the ERCC spike-ins14. 
These analyses complement work examining fold-change recovery  
for these synthetic RNAs47. Across platforms, we observed that with 
sufficiently high expression levels (log2[conc] > 3), the expected 
ratios of 1:2, 2:3, 1:1 and 4:1 were accurately recovered using about 
90 million mapped fragments (Fig. 4c), with high precision indicat-
ing good reproducibility. Finally, we examined the ERCC absolute 
titration levels, as the ERCC RNAs were spiked into samples A and 
B before samples C and D were created (Supplementary Fig. 1).  
We observed, however, that the fraction of reads aligning to ERCC 
spike-ins for a given sample varied widely between libraries and plat-
forms, with measured ERCC ranges of 1–2.5% for HiSeq 2000 and 
2.5–4.7% for SOLiD, with a clear ‘library effect’ observed for all sites 
and platforms, affecting reproducibility. (Fig. 4d and Supplementary 
Fig. 15). Indeed, when using the vendor-prepared library as the 
cross-site control, we observed very consistent measurements of the  
percentages of reads mapping to ERCCs, which indicates a large 
degree of variation from the preparation of libraries even at the same 
site. The resulting lack of meaningful absolute expression level meas-
urements is moreover not specific to the ERCC spike-ins, as similar 
variation and substantial platform-specific differences could also be 
observed for human genes (Supplementary Fig. 16).
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Figure 5 Cross-platform agreement of  
expression levels. (a) Comparison of log2  
fold-change estimates for 843 selected genes.  
Good and similar concordances were observed  
between relative expression measures from the  
MAQC-III HiSeq 2000 and SOLiD sequencing  
platforms, MAQC-I TaqMan and the MAQC-III  
Affymetrix HuGene2 arrays (Pearson and  
Spearman correlation coefficients are shown;  
cf. Supplementary Fig. 22). (b) Comparison of  
absolute expression levels from HiSeq 2000  
and SOLiD in a rank scatter density plot.  
Expression level ranks for sample A are shown  
on the x axis for Illumina HiSeq 2000 (ILM)  
and on the y axis for Life Technologies SOLiD  
5500 (LIF). Genes are represented by dots,  
and areas with several genes are shown in blue,  
with darker blue corresponding to a higher  
gene density in the area. Large cross-platform  
deviations are seen even for highly expressed  
genes and these variations are systematic.  
The genes in the vertical ‘spur’, for instance,  
are not detected by SOLiD RNA-seq but  
show strong expression levels in HiSeq 2000  
RNA-seq, with an analog comparison to 20,801  
qPCR measurements giving a similar picture  
(Supplementary Fig. 25). The ERCC spike-ins  
are shown as red symbols (+). ERCC spike-in  
signals are systematically lower in the HiSeq  
2000 data, which may be explained by their  
shorter poly-A tails and differences in the library  
construction protocols. (c) The same plot as  
b but removing the 11,066 genes that can  
be affected by the nonstranded nature of the  
applied standard Illumina protocol. Although the actual  
number of genes in the vertical spur that are not detected by SOLiD but show strong expression levels in the HiSeq 2000 is now smaller, it is still 
substantial. (d) Comparison of TaqMan and PrimePCR for 843 selected genes. Expression estimates vary considerably for individual genes, with some 
genes showing high expression in one platform but are not detected at all by the other.
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In addition, when the concentrations of the 92 ERCC spike-in RNAs 
are measured and compared to their nominal concentrations, some 
of them (e.g., ERCC-116) are consistently reported as being up to ten 
times below or above their expected concentrations, perturbing even 
the order of the ERCC scale. These discrepancies are highly reproduc-
ible, suggesting that the bias is sequence dependent. Although mar-
ginal trends could be observed as functions of GC content and average 
probabilities for the unfolding of sequence regions (Supplementary 
Figs. 17 and 18), these did not pass tests for statistical significance. 
No consistent trend could be observed as a function of mRNA length 
(Supplementary Fig. 19), and the majority of the deviations is not 
explained by any of these co-variates, indicating a need for further 
investigation of such distortions and their possible sources. We 
observed, however, that the effect is also protocol dependent and is 
reduced in the absence of poly-A selection (Supplementary Fig. 20). 
This is in line with results in other studies, further underscoring the 
impact of protocol choice on quantification11,21,47, where fragmentation  
time, poly-A enrichment by columns, beads, or ribo-depletion, hex-
amer or oligo-dT priming, library isolation by gel or beads, different 
ligation efficiency, and RNA quality at the start of library prepara-
tion have all been shown to have an effect. Consequently, just as for 
microarrays, absolute measurements by RNA-seq using a particular 

protocol are reproducible but not very accurate. This observation 
implies that the use of external spike-in controls to accurately infer 
absolute expression levels of a gene of biological interest will remain 
challenging as long as these deviations are not better understood and 
can thus be avoided or quantitatively modeled.

Relative gene expression measurements agree across platforms
Because we observed good performance for RNA-seq in consist-
ency tests of relative expression levels, we then sought to compare  
alternative measurement platforms. We first examined the differential 
expression of 843 genes measured by TaqMan for samples A and B in 
the MAQC-I study. Although more strongly expressed than typical 
AceView genes, these genes nevertheless cover a wide range of expres-
sion levels (Supplementary Fig. 21). We found good and comparable 
agreement among different platforms (Fig. 5a, where Pearson and 
Spearman correlation coefficients are given; Supplementary Fig. 22). 
The HiSeq 2000 and SOLiD sequencing platforms showed the highest 
correlation to one another. This is consistent with other comparisons 
of relative expression measures4,6,22,23.

For absolute expression levels, correlations to TaqMan were slightly 
better for RNA-seq than for microarrays (Spearman correlation 0.83 
versus 0.79, P = 0.02), and the average trend follows a more linear 
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Figure 6 Multiple performance metrics for the quantification of genes and alternative transcripts. The y axes show a consistency score. Secondary y axes  
mark the percentage of the maximal possible score. Panels show the three official HiSeq 2000 and SOLiD sites and compare a few analysis variants. 
Green, TopHat2; magenta, TopHat2 guided by known gene models; cyan, Subread; yellow, BitSeq; blue, Magic. (a,b) All AceView annotated genes.  
(c,d) A subset of expressed complex genes with multiple alternative transcripts where comparison to a high-resolution test microarray (rightmost 
bar) could be conducted. (e) Comparison of RNA-seq to four different microarrays and data-processing methods (red bars) by plotting the mutual 
information (y axes) at different read depths (x axes). For the microarrays, the number of probes used is shown. The numbers given for RNA-seq state 
the number of fragments mapped to genes as well as the [total fragments]. SOLiD and HiSeq 2000 performed similarly well for comparable effective 
read depths (Supplementary Fig. 33a). HiSeq 2000 data are plotted here. Each bar shows the minima and maxima across the three official sites. 
The read depth for which average RNA-seq performance met or exceeded that of the array is marked by a cyan bar. The corresponding read depths 
varied widely from 5 million (HGU133plus2 with MAS5) to about 50 million fragments (PrimeView with gcRMA/affyPLM), showing the strong effect 
of the reference gene set implied by the probes on the respective arrays and the employed microarray data-processing methods. Results are shown for 
the Subread pipeline. Alternative RNA-seq data analysis pipelines, however, can require up to double the number of fragments (TopHat2+Cufflinks, 
Supplementary Fig. 35). See Supplementary Figures 33 and 34 for comparisons of other platforms and read depths.
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shape (Supplementary Fig. 23b). Although we observed, on average, 
agreement of absolute expression levels between different platforms, 
there were substantial deviations across the entire dynamic range for 
large numbers of individual genes. These deviations are systematic—
that is, they are not a question of reproducibility, but rather reflect the 
accuracy of absolute expression measures. In particular, by compar-
ing expression level estimates from HiSeq 2000 and SOLiD RNA-seq 
(Fig. 5b), we observed 5,056 genes that were expressed according to 
one platform but not the other (9%). This effect is only partly due to 
the nonstranded nature of the Illumina protocol used here, and the 
presence of 11,066 genes antisense to genes annotated on the opposite 
strand (Fig. 5c).

As an independent additional test, we generated 20,801 PrimePCR 
measurements of the SEQC samples A, B, C and D. We again observed 
that more than a thousand genes (5%) were not considered expressed 
by one platform but were clearly expressed according to the other 
(Supplementary Figs. 24 and 25). Although qPCR-based methods 
have traditionally been used as a reference ‘gold’ standard owing to 
their high sensitivity and dynamic range, it is noteworthy in this 
context that specific primer selection and protocol calibration are 
challenging in their own right24. PCR is affected by GC bias25, and 
considerable differences in expression level measurements from  
different PCR-based assays can be observed (Fig. 5d).

Performance assessment is metric dependent
A major promise of RNA-seq is the extension of expression profil-
ing to the discovery and quantification of alternative transcripts. 
For transcript-specific profiling, however, no large-scale expression 
data from other technologies are available as an external reference 
point. The SEQC data represent an opportunity for the multiplatform  
comparison of transcript-specific measurements.

To support a balanced performance study of gene-level and transcript- 
specific expression profiling, we combined multiple metrics for 
a robust characterization of platforms, sites and data-processing 
options: (i) average measurement precision3, which directly assesses 
reproducibility, (ii) titration order consistency26 and (iii) recovery of 
the expected A/B mixing ratio, providing two complementary assess-
ments reflecting both measurement accuracy and reproducibility, as 
well as (iv) differential expression and (v) the mutual information 
of sample titration, which capture different aspects of information 
content (Online Methods). For a summary view, we first focused on 
genes with a clear directional signal—that is, those that allowed an 
ordered discrimination of the samples A to D, as indicated by the 
mutual information metric (v). We then counted how many of these 
genes also satisfied a second requirement, for each of the metrics 
(i)–(iv). Such an integration of tests through counting genes that 
fulfill multiple assay criteria allows a comprehensive consideration 
of all the genes instead of restricting comparisons to a common 
subset of genes always identified as expressed. This is necessary for 
a meaningful comparison of pipelines and platforms with varying 
degrees of sensitivity (Supplementary Fig. 26a,b). The resulting four 
combined assays for the respective metrics (i)–(iv) are complemen-
tary—that is, a gene satisfying one does not generally satisfy the others 
(Supplementary Fig. 27). The average of the four assays then provides 
a consistency score for robust characterization of measurement per-
formance (Supplementary Fig. 28).

For gene-level profiling, pipelines showed similar performances 
on average (Fig. 6a). Providing known gene models always con-
siderably improved results (cf. our results for standard and gene 
model-guided TopHat2). Lower scores for transcript-level profil-
ing indicate that the discrimination of alternative transcripts is 

more difficult, which is also reflected in stronger effects of pipeline  
choice (Fig. 6b).

RNA-seq has sparked an interest in transcript-specific profiling and 
the development of advanced algorithms for estimating alternative 
transcript abundances. With known gene models, similar approaches 
can now also be applied for microarrays. We thus next focused on a test 
set of 782 genes with multiple alternative transcripts of varying com-
plexity and specifically selected to represent the full subset of spliced 
genes in AceView (Fig. 6c and Online Methods). Covering 5,691 alter-
native transcripts, this test set allows a first comparison of transcript-
specific expression level estimates from RNA-seq and high-resolution 
transcript-level microarray data. We found that efficient transcript-
specific measurements with good precision on microarrays for quan-
titative expression profiling (Fig. 6d, Supplementary Figs. 28 and 29)  
could complement the power of RNA-seq in the discovery and iden-
tification of new alternative transcripts (Fig. 2). In other words, the 
novel transcripts found by RNA-seq can lead to efficient measure-
ments with good precision on microarrays, which can in turn aid in 
the confirmation and functional study of new transcript variants.

Finally, each metric showed a different and platform-specific 
response to signal strength (Supplementary Figs. 30 and 31), which 
for RNA-seq increases with transcript expression level and read depth. 
The read depth at which average RNA-seq performance meets or 
exceeds that of another platform thus directly depends on the cho-
sen metric and the distribution of expression strength and differen-
tial signal in the samples measured. As a result, it also depends on 
the set of tested genes, over which the average performance is being 
computed. We show results here for the mutual information metric 
(Supplementary Fig. 32), which is of direct relevance for classifier 
performance. As expected, RNA-seq performance improved with 
increasing numbers of mapped fragments (Fig. 6e). In particular, 
Life Technologies’ SOLiD and Illumina’s HiSeq 2000 performed 
similarly well for comparable effective read depths (Supplementary 
Fig. 33a). The choice of reference platform considerably affects 
the number of RNA-seq reads required for obtaining comparable 
mutual information per gene (Supplementary Fig. 34). For some 
of the microarrays and data-processing methods tested, as few as 
5 million mapped RNA-seq fragments were more than sufficient 
(HGU133plus2 with MAS5), whereas ~50 million mapped frag-
ments were required for others (PrimeView with gcRMA/affyPLM). 
The choice of RNA-seq pipeline also had an effect, with some tools 
requiring up to twice as many aligned fragments (cf. TopHat2+ 
Cufflinks27, Supplementary Fig. 35).

DISCUSSION
In a multisite, cross-platform study led by the FDA, four well- 
characterized reference RNA sample mixtures with built-in truths 
were profiled to test RNA-seq reproducibility, accuracy and informa-
tion content in a detailed analysis of >30 billion reads on the reference 
samples alone. To our knowledge, the data presented here provide the 
deepest molecular characterization of any RNA samples to date.

We leveraged this deep data set to test the reliability and power 
of RNA-seq in exploring the complexity of the transcriptome. We 
studied the detection of known splice junctions and the discovery of 
unannotated junctions. De novo junction discovery was robust across 
sites both at low and high sequencing depths, even beyond 10 billion 
aligned fragments. Many unannotated splice junctions were detected 
by multiple platforms and pipelines, with concordance directly reflect-
ing the junction expression level. Similar to observations by ENCODE 
at the gene level7, we observed three distinct classes of expression 
levels for splice junctions: highly expressed known junctions, known 
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and unannotated junctions at medium levels, and many unanno-
tated junctions found only at low expression levels. Although it has 
been proposed that an abundance of weakly expressed transcripts 
may reflect biological noise28, the lower expression of these junc-
tions may alternatively be the reason that they have so far received 
less attention in traditional experiments. With alternative transcript 
expression being dependent on cell type and experimental conditions, 
deep RNA-seq will continue to play a key role in fully exploring the 
transcriptomic repertoire, including the construction of extensive 
maps of alternative transcripts13 highlighting splicing variants as 
well as alternative start and polyadenylation sites7. De novo discovery  
constitutes a key strength of RNA-seq and that is reflected in the 
expansive transcriptional landscapes observed from different cells 
and tissues in the transcriptome re-annotation projects for human 
and rat13 and the rich profiles collected in clinical and toxicogenomic 
applications in which many terabases of additional RNA-seq data were 
collected and analyzed12. Future studies can be conducted to identify 
novel alternative transcripts through full gene models, which allow 
the filtering of spurious junctions that cannot be explained by expres-
sion levels of alternative transcripts consistent with the distribution 
of reads that map to exons.

Our read-mapping results underscore how crucial comprehensive 
gene model annotations are to accurate expression profiling3. The 
human genome now has >55,000 well-validated genes, and the major-
ity of them do not encode proteins7. Almost all human multiexon 
genes exhibit alternative splicing, and spliced human genes have on 
average over nine alternative transcribed forms7,17. Additional genes 
and transcripts are still being discovered, even beyond the already 
expansive gene annotation from ENCODE16. Notably, the NCBI 
AceView17 database, which has >50,000 genes annotated from cDNA 
evidence, holds by far the largest and most extensively validated set of 
splice junctions, with >300,000 well supported by the RNA-seq data 
reported in this study alone. Transcripts that may explain a particular 
phenotype may be missed by less-extensive annotations, stressing that 
the most comprehensive annotation for expression profiling is vital 
to accurate clinical research29. The characterization and, particularly, 
the quantification of alternative transcripts, however, still require  
further research. Although expression profiling of alternative tran-
scripts is feasible, reattributing measurements to a set of alternative 
transcripts requires knowledge of all the alternative transcript forms 
of a gene, and involves combining information across the transcripts. 
For genome-scale RNA-seq, this is particularly difficult because  
of the sampling noise from low read counts for many transcripts, 
with recent work observing 300 million sequenced fragments to be 
required for the detection of a specific human alternative splicing 
event with 80% power30.

This also highlights the value of targeted RNA-seq31. Although sim-
pler organisms such as Caenorhabditis elegans may be less affected by 
the difficulties of reliably attributing reads to alternative transcripts32, 
analogous considerations will apply to research on mouse, rat and 
other complex transcriptomes. The need for longer-range information 
is a consequence of the fact that certain complex gene models cannot 
be resolved by the local information provided by either microarray 
probes or individual short RNA-seq reads alone. Although read pairs 
of size-controlled fragments can improve on this, they also limit the 
recovery of shorter transcripts. Full alternative transcript profiling will 
thus greatly benefit from longer RNA-seq reads, which may eventually 
approach the full length of complex cDNAs. Combining deep RNA-seq  
for alternative transcript discovery with modern high-resolution 
microarrays for genome-scale quantification may provide an efficient 
approach for systematic transcript-level expression profiling22.

Although none of the technologies we tested could provide reli-
able absolute quantification, relative expression measures agreed well 
across platforms, including RNA-seq, qPCR and microarrays. The 
majority of genes satisfied constraints based on the truths built into 
the study design. Going beyond earlier platform comparisons that 
considered individual performance metrics3–6,22,23,33, we combined 
complementary metrics for a robust characterization of measurement 
performance that can be combined with further assays such as tests for 
strandedness, considerations based on the ERCC spike-in response, 
and tests for the exclusion of nonspecific background. Notably, the 
important but difficult task of estimating and removing background 
noise (Supplementary Fig. 36b) typically improves accuracy at the 
expense of precision (Supplementary Fig. 29).

Considering the substantial disagreements even between different 
types of qPCR-based assays, we conclude that there is no single ‘gold 
standard.’ Although our cross-platform comparisons reveal common 
trends, drastic systemic differences remain. Reference data sets such 
as the compendium presented here are invaluable for a systematic 
characterization of measurements, which is critical for reliable con-
clusions from large-scale experiments. Specifically, a closer examina-
tion of the varying amount of detected ERCCs per sample indicated 
substantial differences and inconsistencies even across libraries pre-
pared from the same sample at the same site and sequenced by the 
same machine. This implies inherent limitations for the read-out of 
absolute expression level estimates and absolute quantification34.  
As the vendor-prepared libraries gave very uniform results across  
sites (Fig. 4d), the observed variations likely arose in library construc-
tion and may be partially explained by platform-specific differences 
in kit chemistry and varying degrees of sample polyadenylation34. 
Therefore, in RNA-seq experiments, multiple libraries per examined 
condition or sample should be profiled.

We show that filters can improve robustness of differential expres-
sion calls and consistency across sites and platforms. For RNA-seq, 
removing small fold-changes as well as excluding low-expression 
measurements reduced the FDR considerably and, in general, gave 
an improvement over microarrays10 at similar sensitivity. These 
filters also achieved good inter-site agreement of lists of differen-
tially expressed genes, with the performance of several (but not all) 
RNA-seq pipelines becoming comparable to that of microarrays  
(Fig. 3e). Even though a direct comparison of absolute expression levels 
across platforms was not possible, the filters yielded good agreement 
of differential expression calls between platforms (e.g., A versus B on  
HiSeq 2000 compared to A versus B on SOLiD, Supplementary Figs. 13  
and 14), suggesting that differential expression analyses from different 
platforms could be combined.

Importantly, the observed sensitivity of results to pipeline choice 
suggests that substantial improvements in short-read RNA-seq anal-
ysis are still required, particularly for transcript identification and 
quantification. The data we collected in this multicenter study can 
serve as a benchmark set for further advances. Some recent progress 
can be directly attributable to the impact of more successful read map-
pers. In addition, although systematic and sample-specific variations 
in GC bias35, sequence bias and nonspecific signal (Supplementary 
Fig. 36) can contribute to unwanted or missed differential expression 
calls, continued study of the confounding factors in RNA-seq can be 
expected to improve signal quality3,23,35,36, just as methodological  
developments have improved microarray signal read out37–43. 
Conversely, with several microarray designs tested here probing less 
than half of all known AceView genes, new microarray designs can 
take advantage of updated gene annotations and models refined by 
RNA-seq22, as we have shown here with pilot microarrays.
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Already today, RNA-seq can be used as a versatile tool for relative 
expression profiling, with comparable or superior performance to 
microarrays in many applications given sufficient read depth and 
appropriate choice of analysis pipeline. An effective sequencing 
depth is clearly contingent on the experimental goals, with simple 
gene-level expression profiling only requiring 5–50 million single-
ended reads for an appropriate analysis pipeline (cf. Supplementary  
Figs. 11 and 34 and Fig. 6e). A comprehensive characterization of 
alternative transcript expression benefits from the longer-range infor-
mation of read pairs and requires considerably deeper sequencing.  
In our data set, at five million mapped fragments, >15,000 AceView 
genes could already be detected with strong support (16 reads), 
including ~10,000 RefSeq genes (Fig. 2c). Moreover, 10 million 
mapped fragments sufficed for differential expression analysis of the 
most strongly expressed genes in our study, and reliable results across 
sites (see Supplementary Fig. 11 for adapted filter parameters). Other 
applications may require deeper sequencing, as is reflected by dif-
ferent metrics responding differently to an increase in reads for the 
samples and genes studied. Classifier performance, for instance, is 
directly related to the mutual information metric. Although 5 mil-
lion mapped fragments easily gave a mutual information per gene 
comparable to that of HGU133Plus2.0 microarrays with MAS5, 
performance comparable to newer arrays and processing methods 
required about 50 million mapped fragments in this study (Fig. 6e 
and Supplementary Fig. 34), or even required considerably more, 
depending on the RNA-seq analysis pipeline (cf. TopHat2+Cufflinks, 
Supplementary Fig. 35). In addition, the required read depth is also 
dependent on the genome size, transcriptional complexity32, cellular 
distribution of stored versus active RNAs, biological noise44 and the 
panoply of all other factors of cell biology and RNA dynamics. Our 
comprehensive, multisite, cross-platform, benchmark measurements 
under controlled settings thus complement and extend comparisons 
for individual biological experiments (Supplementary Table 1 and 
Supplementary Notes, section 2.4 for further discussion).

In summary, the study and data collection presented here are a 
milestone in the development and dissection of RNA-seq as a method 
for transcriptome profiling. The results based on data sets of this size 
and complexity and an array of independent measures as introduced 
by this study will contribute to a better understanding of the power 
and limitations of RNA-seq. This work is complemented by SEQC 
companion studies analyzing the application of RNA-seq to specific 
biological research and clinical questions11–13,47 which are presented 
elsewhere. Together, the cumulative SEQC data sets with >100 billion 
reads (10 Tb) provide a key resource for testing future developments 
of RNA-seq, as required in clinical and regulatory settings.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All SEQC (MAQC-III) data sets are available 
through GEO (series accession number: GSE47792)45.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study design and data The SEQC (MAQC-III) main study design is based on 
the well-characterized MAQC-I RNA samples: the Universal Human Reference 
RNA (UHRR, from ten pooled cancer cell lines, Agilent Technologies, Inc.) 
and the Human Brain Reference RNA (HBRR, from multiple brain regions of 
23 donors, Life Technologies, Inc.)10. To these, two different ERCC spike-in 
mixes were added14 (50 µl of ERCC mix was spiked into 2,500 µl of total RNA) 
to give: sample A—UHRR with ERCC spike-in mix E, and sample B—HBRR 
with ERCC spike-in mix F. These were then combined in ratios of 3:1 and 
1:3, respectively, to generate samples C and D (Fig. 1b and Supplementary 
Fig. 1).

Each platform vendor designated three ‘official sites’ before samples were 
distributed, and these are marked with a star (*) below. Data produced by the 
official sites were used in all of the analyses performed. In addition, data pro-
duced by the unofficial sites were incorporated in some analyses, for example, 
the analysis of gene detection and junction discovery as a function of read 
depth (Fig. 2, Supplementary Figs. 2–4, 6, 7 and 37) and the study of sen-
sitivity, specificity and reproducibility of differential expression calls (Fig. 3, 
Supplementary Figs. 10–14 and 38–40).

Illumina HiSeq 2000 data were provided by six sites (Supplementary Tables 6  
and 7): (i) Australian Genome Research Facility; (ii) Beijing Genomics 
Institute*; (iii) City of Hope; (iv) Weill Cornell Medical College*; (v) Mayo 
Clinic*; and (vi) Novartis, generating 100+100 nt read-pairs.

Life Technologies SOLiD 5500 data were provided by four sites 
(Supplementary Tables 8 and 9): (i) University of Liverpool; (ii) Northwestern 
University*; (iii) Penn State University*; and (iv) SeqWright Inc.*, generating 
51+36 nt read-pairs, except for Liverpool which applied a protocol variant 
giving single 76-nt reads.

All official sites created four replicate measurements of each sample A to 
D, and also sequenced a vendor-prepared fifth replicate (Fig. 1b). The other 
HiSeq 2000 sites sequenced four replicate libraries of each sample A to D. In 
Liverpool, one site-prepared library and one vendor-provided library of each 
of the samples A to D were sequenced.

For comparisons of gene-level expression profiling, samples A to D were 
also hybridized to a variety of commercial microarray platforms: (i) Affymetrix 
HuGene2.0 (one site: Stanford); (ii) Affymetrix PrimeView (one site: Stanford); 
(iii) Agilent 60k (one site: Boku University Vienna); and (iv) Illumina Bead 
arrays (two sites: City of Hope, and University of Texas Southwestern Medical 
Center). In addition, MAQC-I Affymetrix HGU133Plus2.0 data from six sites 
were reanalyzed. Providing another independent platform, 20,801 PrimePCR 
measurements were also performed, with at least ten qPCR reactions per assay 
to assure good specificity, efficiency, linear dynamic range and background 
from negative controls (see Supplementary Notes, section 3.5 for more 
detail).

For comparisons of transcript-level profiling, exploring the potential of 
high-density microarrays for alternative transcript-specific quantification, 
an Agilent 1M feature microarray was tested at Boku University Vienna. The 
microarray contained 1 million probes of 60 nt in length, covering 782 AceView 
genes with 5,691 alternative transcripts, and including the ERCC spike-ins, 
averaging: 33 probes per exon (7× coverage, 9 nt spacing) and 55 probes per 
junction (about 1 nt spacing). The set of genes was selected to: (i) show expres-
sion in one of the samples in an SEQC RNA-seq pilot study; (ii) have a similar 
average expression distribution as the full set of AceView genes in the pilot 
study; (iii) have a similar differential expression distribution as the full set of 
AceView genes in the pilot study; and (iv) have a similar distribution of the 
number of transcripts per gene as the full set of genes annotated in AceView. 
These and similar microarrays can be ordered from Agilent, and the design 
of the test microarray is published together with this paper. Affymetrix also 
manufactures high-density transcriptome microarrays, which were released 
in early 2013, not in time to be included in the SEQC study.

Roche 454 GS FLX data were provided by: (i) the Medical Genomes Project; 
(ii) the New York University Medical Center; and (iii) SeqWright Inc. At each 
site, one replicate of samples A and B was sequenced (two runs).

Reads were mapped to a human reference and the ERCC spike-in sequences. 
Depending on the pipeline, genomic DNA (hg19) or transcript sequences 
were used as human reference. Unless otherwise stated, results for the gene 

model annotation of AceView 2010 are shown. Other annotations considered 
included RefSeq v104 and GENCODE v15.

The HiSeq 2000 sites produced on average 110 million read-pairs per repli-
cate, for a total of 2,200 million per site (Supplementary Tables 6 and 7). The 
official SOLiD sites produced on average 50 million read-pairs per replicate, 
for a total of 980 million per site (Supplementary Table 8). Liverpool gener-
ated 545 million single reads (Supplementary Table 9). The Roche 454 sites 
produced on average 1 million reads per replicate, for a total of about 2.1 
million reads per site (Supplementary Table 10).

For the validation of junctions discovered by RNA-seq, for a random selec-
tion of 173 junctions to test, qPCR measurements were performed with prim-
ers designed to specifically validate the particular junction, running two qPCR 
reactions per assay for all samples A…D (see Supplementary Notes, section 
3.6 for more detail). Specificity was confirmed by analyses of PCR product 
lengths. This allowed the identification of nonspecific assays, identifying the 
target but also picking up additional unintended targets due to unexpected 
or unavoidable cross-reactivity (giving a qualitative validation but no mean-
ingful quantitative read-out) and of noninformative assays, failing to pick 
up the target but picking up unintended targets. We provide information on 
RNA-seq read coverage flanking all 250 candidate junctions considered for 
validation in file Supplementary Data 1. Supplementary Data 2 provides 
the qPCR primer sequences employed, qPCR results and expression level 
estimates, as well as the corresponding RNA-seq expression level estimates 
for the 173 assays performed. Further data and results are collected as archive 
file Supplementary Data 3.

Data processing—assessing expression estimates. A variety of tools/pipelines 
to process RNA-seq data were compared (see Supplementary Protocols for 
pipeline parameters used):

TopHat2 std: TopHat v2.0.0 (ref. 20) + CuffDiff v2.0.0 (ref. 27).
TopHat2 G: TopHat v2.0.0 with -G parameter (providing the reference GTF 

file) + CuffDiff v2.0.0.
Magic: NCBI AceView MAGIC17.
BitSeq: SHRiMP2 v2.2.2 (ref. 48)+ BitSeq v0.4.2 (ref. 49).
Subread: Subread 1.3.0 (ref. 19). The Subread pipeline uses the sub-

junc function to identify exon-exon junctions and the featureCounts50  
function to obtain count summaries for each gene and spike-in transcript  
(see Supplementary Notes, section 3.1 for more detail).

r-make: Cornell’s r-make pipeline incorporating STAR18 (http://physiology.
med.cornell.edu/faculty/mason/lab/r-make/).

For LifeTech reads, all alignments were processed in color space.
Applying consistency tests based on truths built into the study design to 

expression levels of individual junctions, we considered the number of reads 
hitting a specific exon-exon junction as an indicator of expression level.

Except for r-make, which provides raw read counts, each pipeline already 
has a built-in approach to normalization. To analyze Agilent 1M microarray 
data, a variance-stabilizing normalization (vsn)38 was used. Probe sequences-
specific signals have been modeled using established methods, saturation 
effects detrended and outlier probes downweighted40–42. Transcript variant 
expression levels have been estimated using a hierarchical Bayesian approach 
similar to modern methods applied for RNA-seq data analysis (see ‘Transcript 
quantification for Agilent high-density microarrays’ section).

CustomCDFs (v16, re-mapped to the latest AceView) were used for an anal-
ysis of the Affymetrix data (HGU133Plus2.0, PrimeView, and HuGene2.0)29, 
respectively covering 24,623, 17,984 and 29,879 genes. PrimeView and 
HuGene2.0 data were analyzed using established methods (correction for 
probe sequence-specific effects by gcRMA39, conservative normalization across 
arrays by vsn38, and robust probe set summarization by affyPLM), whereas 
for the HGU133Plus2.0 microarrays, a combination of more recent tools 
that appeared to be more efficient were used (correction for probe-specific  
saturation effects by Hook41, conservative normalization across arrays by vsn38 
and factor-based probe set summarization by FARMS40).

For Illumina Bead microarrays and Agilent 60K microarrays variance sta-
bilization normalization (vsn38) was applied.

http://physiology.med.cornell.edu/faculty/mason/lab/r-make/
http://physiology.med.cornell.edu/faculty/mason/lab/r-make/
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Discovery of transcriptome complexity at high read depth. The detection 
and discovery of junctions was performed by Subread using data from all six 
HiSeq 2000 sites as well as all four SOLiD sites, and compared to results by 
r-make using data from all six HiSeq 2000 sites.

We applied consistency tests for the truths built into the study design to 
junction expression levels. The sample expression levels of almost one-third 
of all known AceView junctions (and 38% of all detected) follow the expected 
titration order while also correctly yielding the expected A/B mixing ratio 
and show a clear differential signal as assessed by the mutual information, a 
measure of information content (Supplementary Fig. 37 and Supplementary 
Table 11). Of the well-supported new junctions, 5,189 passed these rigorous 
filters. Conservatively assuming a 1:3 ratio as in the AceView junctions, there 
may easily be three times as many new junctions, thereby adding over 15,000 
likely new junctions to the already extensive AceView annotation. Furthermore, 
considering that we essentially required junctions to be independently detected 
in by SOLiD, where 98% of junctions were detected by a single site (LIV) and 
thus corresponding to just about 1/65 of the total HiSeq 2000 sequencing 
volume, and detection power being about 2× lower (Supplementary Table 2), 
there may well be up to 5,000 × 3 × 65 × 2 = 2 million new junctions to be 
discovered in samples A and B alone. Even more junctions than in samples A 
and B were discovered in the SEQC neuroblastoma study.

Transcript quantification for Agilent high-density microarrays. 
Quantification of transcript expression from the probe level information was 
carried out using a linear mixed model independently for each gene and sam-
ple. Denoting the expression level of probe p as yp, we modeled the probe 
expression as the sum of effects from transcripts with a probe-match:

y xp t p
t

T
t=

=
∑ d ,

1

The Kronecker delta dt p,  is one exactly if the probe p is matching the tran-
script t, and zero otherwise, whereas xt denotes the unknown abundance for 
transcript t. Further, we assume Gaussian additive and multiplicative error 
variances. Probe-level noise tends to exhibit a strong spatial correlation struc-
ture, which we account for by using a latent Gaussian process function51. We 
employ a squared exponential covariance function where the probe distance 
in transcript space is used to parameterize the covariance.

Inference is performed by maximizing the joint marginal likelihood of all 
considered probes given with respect to the hidden transcript abundances (xt) 
and the noise covariance parameters. To mitigate the computational complex-
ity of Gaussian process models (cubical scaling in the number of probes), we 
randomly chose probes for each gene selecting a subset of at most 700 probes, 
including probes falling onto junctions.

Discrete nature of RNA-seq data. With the discrete nature of RNA-seq data 
and considering that most analysis tools work on a log2 scale, consistent ways 
need to be found for dealing with unexpressed or not detected features, which 
are supported by zero reads. As the lowest positive expression is just a sin-
gle read, a common approach is the addition of a pseudo-count (e.g., 0.5 in 
voom52). An alternative well-established for microarray data analysis is the 
application of asinh as a variance-stabilizing transform assuming an addi-
tive-multiplicative error model. The transform is approximately linear for 
small values; for larger values it is well approximated by a logarithm. Another 
approach (natively applied, for example, in Magic17) is to use a threshold below 
which measurements are considered below detection sensitivity. Here that 
threshold has been set to the highest minimum read count of all measurement 
samples adjusted for library size (the total number of reads), and this threshold 
is then applied consistently as a floor to all expression levels. We have applied 
this approach to improving consistency in our studies to the data from each 
pipeline and platform (and thus we were not adding the pseudo-count of 0.5 
reads when using voom).

To identify genes, transcripts and junctions with clear support of sequence 
reads, thresholds were applied. Support was considered sufficient when at least 
16, 16, or 8 at reads were observed, respectively. For Figure 2b, expression 

above background level as determined by the Magic pipeline was additionally 
required for genes.

Sensitivity, specificity and reproducibility of differential expression calls. 
In this part of the study the subset of 23,420 AceView genes (of the version fro-
zen for the SEQC study) present on the MAQC-I Affymetrix HGU133Plus2.0 
microarray was used.

As the array data were already processed and normalized with state-of-
the-art methods (see ‘Data processing’ sections) no further processing was 
required. For RNA-seq data, weighted trimmed mean of log fold-change nor-
malization36 improved results (data not shown), in agreement with a recent 
performance comparison of normalization methods53. For this normaliza-
tion step, the TMM implementation provided in the Bioconductor R package 
edgeR54 was employed.

Several of the RNA-seq pipelines examined exploit multimapping reads. 
This increases power11 and, more generally, also allows the analysis of alter-
native transcripts. Those pipelines report expression-level estimates rather 
than read counts. For a uniform approach to differential expression analysis, 
RNA-seq data were therefore analyzed using an established approach sup-
porting such pipelines. Precision-based weights were attached to normalized 
expression estimates on the log-scale to account for higher variability at low 
expression levels using voom52 of the limma package37. The voom function 
has been developed to account for different variances as a function of signal 
intensity. For count data, such a variation is expected by theory, whereas for 
expression level estimates, it is empirically justified. So, in general, we apply 
the voom model for expression level dependent variance to account for the 
different platform-specific noise characteristics as a function of the expression 
level (Supplementary Fig. 38).

Differential expression was then assessed for both microarray and sequenc-
ing platforms using the empirical Bayes moderated t-statistic of the limma 
package37. A P-value threshold of 0.01 unadjusted for multiple testing was 
used, as suggested in the MAQC-I study10. As the number of DEGs was similar 
for P < 0.01 and the qBY < 5%, where qBY is the Benjamini-Yekutieli adjusted 
false-discovery rate, downstream analysis is not qualitatively affected by this 
choice (Supplementary Fig. 39 versus Supplementary Fig. 40).

An estimate of the empirical eFDR was computed by comparing the number 
of DEGs for intrasite A versus B and intersite A versus A comparisons. For each 
A versus A analysis two eFDRs were calculated (using the A versus B compari-
son of the two sites considered in the matching A versus A comparison).

Further filters were applied in order to control the eFDR, with parameters 
chosen to give similar numbers of A versus B differential expression calls:

AFX: |log2(fold-change)| > 1
MAGIC: |log2(fold-change)| > 1.7 and AveExp > 32%
r-make: |log2(fold-change)| > 1.7 and AveExp > 33%
Subread: |log2(fold-change)| > 1.7 and AveExp > 32%
BitSeq: |log2(fold-change)| > 2 and AveExp > 19%
TopHat2 –G: |log2(fold-change)| > 2 and AveExp > 23%

When filtering for average log2 expression level (AveExp), the stated fraction 
of weakly expressed genes to be removed also included in that percentage the 
genes that were not observed at all. This was to allow comparisons across dif-
ferent pipelines observing varying numbers of genes.

Metrics for a robust characterization of platforms, sites and data-processing 
options. The complementary metrics examined react differently to rescaling, 
shifts and other consequences of data processing. As a result, individual pipe-
lines can show varying performance in specific assays. For a robust perform-
ance characterization, we combine the complementary metrics.

Different analysis pipelines and platforms, however, identify varying num-
bers of targets (see Supplementary Notes, section 3.4 for more details) With 
this number varying considerably, performance needs to be assessed in terms 
of actual counts or fractions of all genes, rather than fractions of observed 
genes. An increased sensitivity of some pipelines and platforms can be dem-
onstrated by not limiting analysis only to genes observed by all pipelines and 
platforms.
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1)  We count a gene as preserving titration monotonicity, when A > B and, 
as expected A ≥ C ≥ D ≥ B or, conversely, for A < B.

2)  A gene is considered precise for a sample, if the standard error across 
technical replicates is <10%.

3) A deviation <10% from the expected behavior of

log log ( ) log ( )C
D

k A
B

k k A
B

k= + −





− + −



1 1 2 21 1

where the correction z of the known mixing coefficients k z z1 3 3 1= +/( ) and 
k z z2 3= +/( ) arising out of different ratios of mRNA versus total RNA in the 
samples A and B has been determined by a nonlinear robust fit (nlrob) from 
an independent RNA-seq library (library #5). The obtained value, 1.45 ± 0.01 
is very much in line with the experimental estimate26 of 1.43 ± 0.10. The plots 
and statistics shown in the paper give the same picture with either value. To 
ensure pipeline independence, the experimental value 1.43 is being used.

4) For the purpose of this metric, we call a gene differentially expressed if 
it is significant at a Benjamini-Yekutieli corrected FDR of 5% in an empirical 
Bayes moderated t-test across the expression level estimates of samples A and 
B (limma).

5) Finally, we calculate the mutual information of sample titration by 
extending the approach introduced for two state measurements43. The mutual 
information between gene or transcript expression and titration requires mod-
eling the probability of a measurement being from sample A, C, D or B, under 
the constraint that these labels are ordered. To avoid a dependency of our 
assessment on choosing mutual information of sample titration as evaluation 
measure, we complemented this assay with three other alternative measures. 
For that purpose, we evaluated the mutual information for discriminating A 
versus B, and the mutual information for discriminating C versus D using an 
established approach43. In order to add a further measure that does not depend 

on modeling assumptions, for all genes and transcripts, we also calculated a 
nonparametric estimate of the probability that the respective measurement 
fulfills the order constraint which is implied by the titration experiment. All 
four measures are illustrated in Supplementary Figure 41 for the official 
HiSeq 2000 and SOLiD sites and a number of different quantification pipe-
lines. Although the complementary measures suggest different numbers of 
‘good’ transcripts and genes, they qualitatively agree with no exception on 
how they rank the different platforms and pipelines. This confirms that we 
can select the mutual information of sample titration to represent this class 
of information preserving measures to add an independent robust viewpoint 
for characterizing quantification performance in Figure 6.

Further details and information complementing the Online Methods as 
well as additional results are provided in Supplementary Tables 12–15 and 
Supplementary Figs. 42–46.
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