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Assessing technical performance in differential
gene expression experiments with external spike-in
RNA control ratio mixtures
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There is a critical need for standard approaches to assess, report and compare the technical

performance of genome-scale differential gene expression experiments. Here we assess technical

performance with a proposed standard ‘dashboard’ of metrics derived from analysis of external

spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios

enable assessment of diagnostic performance of differentially expressed transcript lists, limit of

detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The

performance metrics suite is applicable to analysis of a typical experiment, and here we also apply

these metrics to evaluate technical performance among laboratories. An interlaboratory study using

identical samples shared among 12 laboratories with three different measurement processes

demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement

variability and bias are also comparable among laboratories for the same measurement process. We

observe different biases for measurement processes using different mRNA-enrichment protocols.
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R
atios of mRNA transcript abundance between sample types
are measures of biological activity. These measurements of
differential gene expression are important to underpin new

biological hypotheses and to support critical applications such as
selection of disease classifiers and regulatory oversight of drug
therapies. Controls and associated ratio performance metrics are
essential to understand the reproducibility and validity of
differential expression experimental results. External spike-in
control ratio measurements can serve as a truth set to benchmark
the accuracy of endogenous transcript ratio measurements.

A library of 96 external RNA spike-in controls developed by
the External RNA Controls Consortium (ERCC)1 and distributed
by NIST as Standard Reference Material 2374 (ref. 2) can act as
technology-independent controls for differential expression
experiments. Method validation of differential expression
experiments based on these ERCC controls is the focus of this
work. This validation supports comparisons across experiments,
laboratories, technology platforms and data analysis methods3–7.
In any differential expression experiment, with any technology
platform, a pair of ERCC control ratio mixtures can be added
(‘spiked’) into total RNA samples such that for each ERCC
control the relative abundance of the control between samples
(ratio) is either of known difference (a true-positive control) or
the same (a true-negative control).

To enable rapid, reproducible and automated analysis of any
differential expression experiment we present a new software tool,
the erccdashboard R package, which produces ERCC ratio
performance metrics from expression values (for example,
sequence counts or microarray signal intensities). These ratio
performance measures include diagnostic performance of differ-
ential expression detection with receiver operating characteristic
(ROC) curves and area under the curve (AUC) statistics, limit of
detection of ratio (LODR) estimates and expression ratio
technical variability and bias.

Ratio performance measures provided by the erccdashboard
package do not supersede other quality control (QC) measures,
such as the QC methods recommended to evaluate sequence data
both before and after alignment to a reference sequence in
RNA-Seq experiments8–12. Sequence-level QC methods are
important for evaluating the quality of data in both transcript-
discovery and differential expression RNA-Seq experiments but
do not provide the additional analysis of positive and negative
controls to fully evaluate differential expression experiment
technical performance.

Analysis of ERCC ratio mixtures with the erccdashboard
package provides technology-independent ratio performance
metrics (applicable to RNA-Seq, microarrays or any future gene
expression measurement technologies). These metrics are a
significant extension beyond previous work with ERCC tran-
scripts in RNA-Seq measurements13. In this earlier work, a single
mixture of ERCC transcripts was used to assess dynamic range
and precision in individual transcript-discovery RNA-Seq
measurements. This earlier work did not assess differential
expression experiments using ratio performance metrics from
ERCC control ratio mixtures.

The source to create ERCC ratio mixtures is a plasmid DNA
library of ERCC sequences that is available as a standard
reference material from NIST (SRM 2374 (ref. 2)). This library of
96 sequences is intended for use as controls in commercial
products, such as the pair of ERCC ratio mixtures used in this
analysis. In these commercially available mixtures (Mix 1 and
Mix 2), 92 of the 96 ERCC RNA molecule species were pooled to
create mixes with true-positive and true-negative relative
abundance differences. The two ERCC ratio mixtures are each
composed of four subpools (23 ERCC controls per subpool) with
defined abundance ratios between the mixes (Fig. 1a). Three of

the subpools have different ERCC abundances in Mix 1 and Mix
2 (4:1, 1:2 and 1:1.5 ratios), and one subpool has identical ERCC
abundances in the two mixes (a 1:1 ratio). Within each subpool
ERCC abundances span a 220 dynamic range. Figure 1b illustrates
the ratio-abundance relationship of the 92 controls in the pair of
mixtures.

Ratio mixture analysis with the erccdashboard is demonstrated
for two types of differential expression studies: (1) rat
toxicogenomics experiments with different treatments conducted
at a single sequencing laboratory14 and (2) interlaboratory
analysis of the samples used in the MicroArray Quality-Control
(MAQC) study15, Universal Human Reference RNA16 (UHRR)
and Human Brain Reference RNA (HBRR). The rat
toxicogenomics study design consists of biological replicates for
treatment and control conditions and illustrates a canonical
RNA-Seq differential expression experiment with biological
sample replication (Fig. 1c). In the interlaboratory study of the
reference RNA samples, library replicates are compared in lieu of
biological replicates (Fig. 1d).

The interlaboratory study design offers a valuable opportunity
to evaluate performance of experiments at individual laboratories
and reproducibility between laboratories, even in the absence of
biological replication because of the use of reference samples.
Aliquots from a pair of spiked reference RNA samples were
distributed to multiple laboratories for the Sequencing Quality-
Control (SEQC) project17 and the Association of Biomolecular
Resource Facilities (ABRF) interlaboratory study18. Both studies
measured the same samples on multiple measurement platforms.
Subsets of experiments from these studies are analysed here with
the erccdashboard package. These experiments include RNA-Seq
experiments from the SEQC study using the Illumina HiSeq
platform (ILM SEQC Lab 1–6) and the Life Technologies 5500
platform (LIF SEQC Lab 7–9), and ABRF study Illumina HiSeq
platform (ILM ABRF Lab 10–12). Three laboratories in the SEQC
project also performed microarray experiments with these same
samples (Illumina BeadArray experiments at Lab 13 and 14 and a
custom Agilent 1 M array at Lab 15).

Analysis of a differential gene expression experiment using the
erccdashboard package produces four main analysis figures.
These four erccdashboard figures enable ‘reproducible research’
by providing an assessment of the key technical performance
measures for any differential expression experiment. Examples of
these four figures are presented for rat toxicogenomics experi-
ments and reference RNA experiments from the large SEQC and
ABRF experiment cohorts. Here we also evaluate the reprodu-
cibility of reference RNA experiments among laboratories using
the SEQC and ABRF interlaboratory study data. Analysis of the
sequencing experiments from the 12 laboratories participating in
the interlaboratory study shows generally consistent diagnostic
power across 11 out of the 12 participating laboratories. Ratio
measurement variability and bias are also comparable among
laboratories that used the same measurement process, which is
defined here as a combination of sample preparation and
sequencing. Three distinct measurement processes are assessed
in this interlaboratory analysis and we observe different biases for
measurement processes that include different mRNA-enrichment
protocols.

Results
Examples of the erccdashboard performance measure figures are
presented in Figs 2–5 for two arbitrarily-selected example
experiments from the large SEQC and ABRF experiment cohorts
(for all results see Supplementary Figs 1–20). These two examples
are a rat toxicogenomics methimazole-treated (MET) and control
(CTL) sample RNA-Seq experiment with biological replication
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(Figs 2a–5a and Supplementary Fig. 2) and the Lab 5
RNA-Seq reference sample experiment (Figs 2b–5b and
Supplementary Fig. 10).

Dynamic range of control measurements. The 220 range of RNA
abundance in ERCC Mix 1 and Mix 2 (Fig. 1b) is used to assess
the dynamic range of an experiment. The rat RNA-Seq experi-
ment has a B215 dynamic range (Fig. 2a) and the reference
sample RNA-Seq experiment dynamic range spans the 220 design
dynamic range (Fig. 2b). This difference is because of increased
sequencing depth in the reference sample experiment. Note that
the observed ERCC control signal-abundance relationship
(Fig. 2a,b) is intended for qualitative assessment of dynamic
range. The ERCC controls, as used in these differential gene
expression experiments, are not recommended for chemical
calibration. The mRNA-enrichment process, in particular poly-A
selection, can bias the expected signal-abundance relationship of
ERCC controls, which have poly-A tails ranging from B20 to
26 nt, significantly shorter than endogenous transcript poly-A
tails (see Supplementary Figs 21–23 and Supplementary Note 1).

Diagnostic performance of control ratios. When true differ-
ences in expression exist between samples in an experiment, those
differences should be detected in differential expression tests;
where no differences exist, no difference should be detected. The
true-positive and true-negative ERCC control ratios can be used
in a receiver operator characteristic (ROC) curve analysis of rank-
ordered differential expression test P-values (Fig. 3). ROC curves
and the corresponding AUC statistics19,20 change based on the
discrimination of true-positive values and true-negative values in
this rank-ordered list. Perfect diagnostic performance is

represented by AUC¼ 1 and a diagnostic failure is indicated by
AUC¼ 0.5, meaning that discriminatory power of an experiment
is equivalent to a random guess.

Within each experiment, there is a predictable increase in
diagnostic performance with increasing ERCC ratio differences
(Fig. 3a,b). This relationship between design ratio and diagnostic
performance relies on balanced, matched distributions of positive
and negative control abundances. This design requirement is a
critical consideration for preparation of any set of external spike-
in ratio mixtures for diagnostic performance evaluation.

In the rat experiment, all AUC statistics were 40.9, indicating
good diagnostic power (Fig. 3a). For the reference RNA
experiment (Fig. 3b), diagnostic performance from ROC curves
as AUC statistics is slightly lower. This is explained by the greater
sequencing depth in these experiments, resulting in detection of
more ERCC controls and a more stringent ROC analysis. This
highlights a limitation of ROC curve analysis; it does not directly
assess diagnostic performance as a function of abundance. To
address this shortcoming, we introduce a new performance
measure, LODR estimates.

LODR estimates. Identifying differentially expressed transcripts
is the objective of differential expression experiments; however,
how much information (signal) is needed to have confidence that
a given fold change in expression of transcripts will be detected?
With LODR estimates, empirical ERCC control ratio measure-
ments can inform researchers of diagnostic power at a given fold
change relative to transcript abundance for an experiment.

An LODR estimate for a particular fold change is the minimum
signal, above which differentially expressed transcripts can be
detected with a specified degree of confidence. LODR offers a
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Figure 1 | Design of ERCC RNA control ratio mixtures and example experiments. (a) Two mixtures of the same 92 ERCC RNA transcripts are prepared

such that four subpools with 23 transcripts per subpool are in four defined abundance ratios between the two mixtures. (b) Within each subpool the 23

controls (several points overlap) span a broad dynamic range of transcript concentrations. (c) In a typical single laboratory RNA-Seq experiment, biological

replicates would be prepared for treatment and control samples. Rat toxicogenomics experimental samples represent this experimental design. (d) In the
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statistically derived, objective alternative to other methods of
parsing gene lists.

An LODR estimate is obtained for a specified ratio by
modelling the relationship between differential expression test
P-values and signal. An acceptable false discovery rate (FDR)
must be chosen to estimate an LODR. For the selected FDR
(q-value) a threshold P-value can be selected from the population

of P-values from the experiment. An LODR estimate for each
differential ratio is found based on the intersection of the
model confidence interval upper bound (90%) with the P-value
threshold. A recommended default for erccdashboard analysis is
FDR¼ 0.05; however, this input parameter may be adjusted.
For all rat RNA-Seq experiments (Fig. 4a and Supplementary
Figs 1–5) FDR¼ 0.1 because in these sequencing experiments the
differential expression testing yields P-value distributions that do
not contain strong evidence for differences between the samples.
A smaller FDR for these experiments would decrease the
threshold P-value and increase the LODR estimates. A much
lower threshold, FDR¼ 0.01, is used in the reference sample
experiments (Fig. 4b and Supplementary Figs 6–20) because large
differences in reference sample transcript abundances yield a
large number of small P-values. See Methods for more guidance
and detail on LODR estimation. In Supplementary Information,
we also describe a way to assess validity of the ERCC control data
for LODR estimation and an alternative model-based approach
for LODR estimation (Supplementary Figs 24–25 and
Supplementary Notes 2–3).

Detection of differential expression improves with increasing
signal for all experiments (Fig. 4a,b); this cannot be discerned
with ROC analysis. The AUC results for the rat experiment
(Fig. 3a) had very similar diagnostic performance for all ratios (all
ratios have AUC40.95); however, the LODR estimates for each
ratio are significantly different (Fig. 4a). This analysis demon-
strates that, although AUC statistics can be a good summary of
overall diagnostic performance, LODR estimates provide valuable
evidence of diagnostic performance with respect to transcript
abundance.

ERCC results that are above each LODR estimate are
annotated with filled points on MA plots21 (Fig. 5a,b); such
annotated MA plots can be used to design future experiments to
achieve balance between cost and the desired diagnostic power.
For example, when signals for genes of interest (GOIs) are
observed at or near an LODR estimate, deeper sequencing of the
samples should increase signal for the GOIs to be above the
LODR estimate. Spike-in control LODR estimates provide an
objective expectation for detection of differentially expressed
endogenous transcripts but will not substitute for careful
experimental design with appropriate biological replication.

Bias and variability in control ratio measurements. Bias and
variability of control ratio measurements are evaluated graphi-
cally with MA plots. ERCC control ratio measurements for each
of the four ERCC subpools should agree with the nominal ratios
(annotated with solid coloured lines in Fig. 5a,b). The distance
between the solid and dashed lines for each ERCC subpool
(Fig. 5a,b) is the bias in the control ratio measurements. For the
rat experiment (Fig. 5a), the control ratio measurements show
little bias; however, a more significant bias is observed for the
control ratio measurements in the reference RNA experiment
(Fig. 5b). This bias is attributable to the documented difference in
mRNA fraction between the two reference samples22. Following
mRNA enrichment, the relative amount of ERCC mix to
endogenous RNA in HBRR is greater than the amount in
UHRR; this creates the bias observed in the ERCC control
ratio measurements (see example illustration in Supplementary
Fig. 26).

Correcting this bias because of mRNA fraction differences is
critical for accurate differential expression testing. A model to
describe this bias in control ratios, rm, is:

RS ¼ rm
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Figure 2 | Signal-abundance plots show dynamic range of experiments.

(a) dynamic range of a rat toxicogenomics experiment with biological

replicates (n¼ 3) of control (CTL) and methimazole-treated (MET) (b)

dynamic range of an RNA-Seq measurement of reference samples (UHRR

and HBRR) with library preparation technical replicates (n¼4) from Lab 5

of an interlaboratory study. In each figure points are coloured by ratio

subpool, error bars represent the standard deviations of replicates, and

shape represents sample type. In the RNA-Seq results, ERCC controls that

did not have at least one count in three libraries for either sample were not

included in the signal-abundance plot.
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where RS is the nominal ratio of controls in subpool S of a pure
ERCC mixture and E1=E2ð ÞS is the observed ratio of measured
ERCC expression values in subpool S in sample 1 and sample 2.
In the absence of bias, log(rm)¼ 0.

rm should be a property of the samples. An empirical rm value
is calculated using the previously reported mRNA fractions of
these samples22. Deviation from this empirical rm is likely
because of bias contributed during sample handling and library

preparation procedures (which include mRNA-enrichment
procedures). Estimates of log(rm) derived from erccdashboard
analysis for these samples are consistent with this empirical
log(rm) estimate (Fig. 5b, Supplementary Figs 6–20) but with
large measurement uncertainties.

Recent work has shown that simple normalization approaches
can be insufficient for experiments where sample mRNA fractions
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are significantly different23. This work and our analysis here
demonstrate the utility of the ERCC controls for the detection of
bias in an experiment because of sample mRNA fraction differences.

Our analysis presents evidence of bias in ERCC control signals
in experiments using poly-A selection for mRNA enrichment
(Supplementary Figs 21–23 and Supplementary Note 1). This bias
has been reported in earlier work13. A protocol-dependent bias
(for example, poly-A selection bias) affecting the ERCC control
signals prohibits the use of these experimental data for spike-in-
based normalization approaches. Deconvolving sample mRNA
fraction differences and protocol-dependent bias require
experimentally validating the stability of the bias and using this
validated protocol. If the protocol-dependent bias is the same
(stable) across samples of interest, then normalization using
spike-ins should be valid. Any protocol-dependent bias observed
with ERCC controls is a red flag that the same bias may affect
endogenous transcripts as well.

Despite the bias in ERCC control signals arising from
inefficiency in their recovery through the mRNA-enrichment
process, the ERCC control ratios are stable and useful for
measurement assurance of endogenous transcript ratio measure-
ments. We observed that samples treated in the same library
preparation batch experienced the same protocol-dependent bias.
All transcript ratios were calculated between samples within a
single library preparation batch and the ERCC ratio results are
shown to be precise and stable across a broad dynamic range and
multiple ratios (Fig. 5a,b and Supplementary Figs 1–20d).

ERCC ratio measurements in the reference sample experiments
have smaller variability compared with the rat experiment
measurements. This difference in ratio variability can be
attributed to both lower sequencing depth in the rat experiment
as well as variability in spiking these biological samples (reference
samples were spiked once in bulk and then aliquoted).

Application of the erccdashboard: interlaboratory analysis.
Interlaboratory reproducibility of RNA-Seq experiments is eval-
uated by comparing erccdashboard performance measures using
the spiked reference RNA samples. Three different measurement
processes (sample preparation and sequencing platform) were
used at different laboratories: Illumina SEQC sequencing sites
(ILM SEQC Lab 1–6), Life Technologies SEQC sequencing
sites (LIF SEQC Lab 7–9) and Illumina ABRF sequencing sites
(ILM ABRF Lab 10–12). At the ILM ABRF sites, ribosomal RNA
depletion was used for mRNA enrichment. At ILM SEQC and
LIF SEQC sites, reference sample total RNA went through two
rounds of poly-A selection but a different type of kit and
experimental protocol was used for each platform. Poly-A selec-
tion was carried out independently for each library replicate at
ILM SEQC sites, and at LIF SEQC sites poly-A selection was
carried out for each sample type.

While reproducibility can be evaluated with these experiments,
note that strong conclusions regarding performance of particular
laboratories, sample preparation protocols or sequencing plat-
forms (these factors are confounded) would require a more
systematic study design repeated over time.

LODR estimates complement AUC statistics for each inter-
laboratory site (Fig. 6a,b), supporting the use of the more
informative LODR as a new performance metric. For the ILM
SEQC experiments (Lab 1–6), although the AUC statistics for all
ratios at Lab 2 indicate slightly decreased diagnostic performance,
the LODR estimates showed similar performance across all six
sites. LODR estimates from the ILM ABRF experiments were
consistent with ILM SEQC experiments despite lower AUC
statistics for the ILM ABRF experiments (Lab 10–12). For the LIF
SEQC experiments (Lab 7–9), both the AUC statistics and LODR
estimates indicated reduced diagnostic performance at Lab 7.
For 1:1.5 ratio measurements in this experiment, diagnostic
performance is very poor, AUC o0.7, and an LODR estimate
could not be obtained for the specified FDR.
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Figure 5 | MA plots show ratio measurement variability and bias.

(a) Shown for biological replicates (n¼ 3) of control (CTL) and

methimazole treated (MET) from a rat toxicogenomics experiment.

(b) Shown for an RNA-Seq measurement of reference samples (UHRR and

HBRR) with library preparation technical replicates (n¼4) from Lab 5 of an

interlaboratory study. ERCC data points (coloured by ratio) represent the

mean ratio measurements per ERCC. Error bars represent the standard

deviation of replicate ratios. Filled circles indicate ERCC ratios above the

LODR estimate for 4:1, 1:1.5 and 1:2 ratios. Endogenous transcript ratio

measurements are shown as grey points. The estimate of mRNA fraction

differences between the samples, rm, with weighted standard errors is

provided in an inset table and used to adjust the nominal ERCC ratios. The

nominal ratios are annotated with solid coloured lines for each ratio subpool

and the adjusted ratios are annotated with dashed coloured lines.
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Weighted mean estimates of the mRNA fraction difference
between the UHRR and HBRR samples for the ILM SEQC
experiments generally show agreement with the previously
reported rm measurement (Fig. 6c) with the exception of Lab 3.
This lab also had an increased standard error for rm compared
with the other ILM SEQC labs. This difference is echoed in other
upstream QC analysis of the ILM SEQC data that showed
decreased sequencing read quality at Lab 3 (refs 17,24).

Large standard errors for rm were obtained for the laboratories
in both the ILM ABRF and LIF SEQC experiments. This
increased variability in the rm estimates is echoed in violin
plots of ratio standard deviations at each site (Fig. 6d). In the
ILM ABRF experiments, Lab 10 had particularly high ratio
measurement variability, suggesting the presence of a batch effect
at this site (See also Supplementary Fig. 24 and Note 2). At Lab 7
in the LIF SEQC experiments, the rm estimate standard errors
and overall ratio measurement variability were very high

(Fig. 6c,d), and this site also showed poor diagnostic performance
(Fig. 6a,b).

QC metrics show consistency for within-platform differences.
Analysis of the ERCC control ratio ‘truth set’ provides evidence of
the poor ratio measurement performance in the Lab 7 differential
expression experiment; however, technology-specific QC mea-
sures are needed to link observations of poor ratio measurement
performance to upstream causes such as sample preparation
issues. QC assessment of the mapped read data for the three
Life Technologies sites was used to identify possible reasons for
performance differences in these experiments.

Lab 7 performance is not an artifact of read mapping and
quantification; similar results were obtained for LIF SEQC data
using both the Life Technologies LifeScope analysis pipeline
(Supplementary Figs 12–14) and the Subread25 and
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featureCounts26 analysis pipeline (Supplementary Figs 27–29).
Mapped read QC metrics from RNASeQC9 for a small subset of
UHRR data from Lab 7–9 mapped with LifeScope show possible
reasons for performance differences. Lab 7 had an increased
percentage of duplicated reads in the libraries they prepared; a
fifth library prepared at an independent site (and then shared
among the three laboratories for sequencing) showed a lower
duplication rate (Supplementary Fig. 30). These results suggest
that libraries prepared at Lab 7 had low complexity. Evidence for
30 coverage bias is observed across all libraries for the middle
1,000 expressed transcripts (Supplementary Fig. 31). For the top
1,000 expressed transcripts, the four libraries prepared at Lab 7
showed increased 30 coverage bias relative to the four libraries
prepared at Lab 8 and 9 (Supplementary Fig. 32). There were no
significant differences in ribosomal RNA mapping fractions for
libraries 1–4 at the three laboratories (Supplementary Fig. 33).

Discussion
The erccdashboard R package is a method validation tool for
standard analysis of differential gene expression experiments. The
key technical performance parameters from ERCC control ratio
mixtures are evaluated with four main analysis figures produced
by the software. Examples of these four figures are shown for two
different experiment types in Figs 2–5. These technology-agnostic
performance measures include dynamic range, diagnostic per-
formance, LODR estimates and expression ratio bias and
technical variability.

A dynamic range of 216 is desirable as a general rule of thumb
for a typical RNA-Seq gene expression experiment. The best
observable dynamic range with the ERCC control ratio mixtures
used in this study is 220.

Diagnostic performance of an experiment can be assessed with
ROC curve analysis; however, care should be taken in comparison
of AUC statistics across experiments without consideration of the
number of controls detected in each experiment. An experiment
with 4:1 AUC of 0.85 where 16 controls were detected out of 23
spiked controls may not necessarily have better performance than
an experiment where 23 controls were detected and the 4:1 AUC
is 0.8. This and other issues noted for ROC curve analysis20

underscore the benefit of using the new LODR performance
metric that summarizes diagnostic performance with respect to
abundance in any experiment and can be informative for
experimental design. If signals from the GOIs in a study are
above the LODR then that indicates the sequencing depth is
sufficient. When this is not the case, deeper sequencing of the
samples should increase signal for the GOIs to be above the
LODR estimate.

Statistically significant ratio measurement bias indicates an
experimental artifact (for example, protocol-dependent bias) or
an mRNA fraction difference between samples. The source of bias
should be identified and addressed with validated methods. Most
reference RNA experiments had a ratio measurement bias that
could be explained by the known mRNA fraction difference for
the reference RNA samples; however, several experiments showed
a significant difference, and some had very large standard errors.
For these experiments, there may be other batch effects that
shifted the ratio measurement bias or contributed to the large
standard errors. These differences between experiments highlight
the utility of ERCC ratio measurements as a truth set to
benchmark the accuracy of endogenous transcript ratio measure-
ments. In other words, ERCC ratio bias in an experiment suggests
that endogenous transcript ratios may be biased in that
experiment as well. Our analysis tool based on the ERCC controls
provides researchers with the ability to use empirical evidence to
assess bias in an experiment that may affect both controls and
endogenous transcripts. Without the use of appropriate controls

and related analysis methods, the presence of such bias might
remain undetected.

Method validation can be accomplished with these ERCC ratio
performance measures for any gene expression measurement
technology, including both RNA-Seq and microarrays, which can
give comparable differential expression results with appropriate
experimental design and analysis. Reproducible research calls for
standard approaches to assess, report and compare the technical
performance of genome-scale differential expression experiments.
As measurement technology costs decrease, differential expres-
sion measurements are increasing in scope and complexity,
including experimental designs with large sample cohorts,
measured over time, at multiple laboratories. Even a single
canonical differential expression experiment can involve the
effort of multiple investigators, from the experimentalist
generating the samples and eventually reporting the conclusions
to the many scientists performing sample preparation, sequen-
cing, bioinformatics and statistical analysis. These erccdashboard
performance measures provide a standard method to enable the
scientific community conducting differential expression experi-
ments to critically assess the performance of single experiments,
performance of a given laboratory over time or performance
among laboratories. Standard method validation of experiments
with erccdashboard analysis will provide scientists with con-
fidence in the technical performance of their experiments at any
scale.

Methods
Reference RNA sample preparation and RNA-Seq. The two ERCC spike-in
RNA transcript mixtures (Ambion, Life Technologies) were produced from
plasmid DNA templates (NIST Standard Reference Material 2374). The reference
RNA samples, Universal Human Reference RNA16 (Agilent Technologies) and
Human Brain Reference RNA (Ambion, Life Technologies) were spiked with the
two ERCC spike-in RNA transcript mixtures (Ambion, Life Technologies) by FDA
National Center for Toxicological Research and distributed to SEQC site
laboratories for sequencing on Illumina, Life Technologies, and Roche platforms as
described in the main SEQC project manuscript17 and these samples were also used
in the ABRF interlaboratory study18. In brief, 50 ml of ERCC Mix 1 was spiked into
2500 ml UHRR (Universal Human Reference RNA) total RNA and 50 ml ERCC Mix
2 was spiked into 2,500ml HBRR (Human Brain Reference RNA) total RNA. Single
aliquots (10ml each) of these two samples were sent to each participating laboratory
to produce replicate library preparations of samples.

For the SEQC study, there were separate library preparation protocols for the
Illumina and Life Technologies platforms including different poly-A selection
protocols for mRNA enrichment. Replicate library preparations (n¼ 4) were
prepared at every laboratory and then at each laboratory all library preparations
were barcoded, pooled and sequenced with 2� 100 paired-end sequencing
chemistry for Illumina and 50� 35 paired-end sequencing chemistry for Life
Technologies using the full fluidic capacity of an instrument (all lanes and flow
cells). Experiments for SEQC interlaboratory analysis from six Illumina sites and
three Life Technologies sites were compared in this analysis.

In addition to the SEQC data, we also evaluated three Illumina sequencing
experiments from the ABRF study that used ribo-depletion for mRNA enrichment
instead of poly-A selection. In these experiments, replicate library preparations
(n¼ 3) were sequenced at each laboratory with 2� 50 paired-end sequencing
chemistry.

For the Illumina SEQC reference RNA libraries, the mean number of reads per
library was 260,098,869 reads, for the Life Technologies SEQC reference RNA
libraries the mean number of reads per library was 109,307,746 reads and for the
ABRF Illumina reference RNA libraries the mean number of reads per library was
257,451,483 reads.

Rat toxicogenomics sample preparation and RNA-Seq. Library preparation for
rat toxicogenomics study samples was performed at a single laboratory with
sequencing runs on Illumina HiScanSQ and HiSeq 2000 instruments as described
in the companion rat toxicogenomics manuscript14. A subset of data, measured
with the HiScanSQ, was analysed here. Rats in the MET, 3ME and NAP sample
sets were treated orally with methimazole, 3-methylcholanthrene, and
betanapthoflavone, and compared with the same set of control rats. Rats in the THI
and NIT sample sets were treated by injection with thioacetamide and
N-nitrosodimethylamine. RNA samples from treated rat replicates were spiked
with ERCC Mix 1 (per treatment type n¼ 3). We retained the match control (CTL)
samples that were spiked with ERCC Mix 2; for the MET, 3ME and NAP
experiments, there were n¼ 3 CTL samples and for the THI and NIT experiments
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the three CTL samples with the highest RIN numbers were used from a set of five
CTL samples. For the five rat toxicogenomics experiments (21 samples), the mean
number of total reads per library was 40,281,946 reads.

Bioinformatic analysis of RNA-Seq experiments. Rat toxicogenomics sample
data were mapped at the National Center for Toxicological Research against rat
and ERCC reference sequences using Tophat27. Sequence reads from the SEQC
interlaboratory study were aligned to human (hg19) and ERCC reference
sequences. SEQC study Illumina platform data were mapped with Burrows-
Wheeler Aligner (BWA)28 and gene level counts corresponding to human and
ERCC nucleic acid features were quantified using reference annotations for the
ERCC controls and hg19 (NCBI RefSeq, Release 52). SEQC study Life Technologies
platform data were mapped with LifeScope (Life Technologies, Foster City, CA,
USA) and reference annotations from UCSC and NIST. Life Technologies platform
data were also mapped with the Subread aligner25 and summarized using the
featureCounts programme26. ABRF Illumina data used in this analysis were
mapped with the STAR aligner using the hg19 genome assembly, and the Gencode
v12 annotation was used for read counting with the Rmake pipeline (http://
physiology.med.cornell.edu/faculty/mason/lab/r-make/). Count data from these
experiments were used in the erccdashboard analysis. The default normalization
for all RNA-Seq experiment sample replicates was 75th percentile normalization of
count data.

Reference RNA microarray analysis. In the SEQC study, there were three
microarray experiments. Two experiments used Illumina Bead Arrays (Lab 13
and 14). For Lab 13 and 14, triplicate arrays were prepared for each reference
RNA sample. Microarray signal intensity data were not background-corrected or
normalized using the Illumina software. The unnormalized data were processed
to keep only the results in all sample replicates (n¼ 6) that had probe detection
P-values that were p0.05. In erccdashboard analysis, the replicates in these array
experiments were normalized using the 75th percentile intensity for each replicate
array. At Lab 15, custom Agilent 1 M microarrays (n¼ 4 per sample) with a
variance stabilizing normalization29 were used in erccdashboard analysis. For the
Agilent arrays, probe sequence-specific signals were modelled using established
methods, saturation effects detrended and outlier probes downweighted30–32.

Gene expression data analysis with the erccdashboard. The erccdashboard
software package was developed in the R statistical computing language33 and the
package is freely available from GitHub (https://github.com/usnistgov/
erccdashboard) and Bioconductor34. The erccdashboard package documentation
includes a user guide to describe how to use the software for analysis of gene
expression data.

A negative binomial generalized linear model was fit to counts for individual
ERCC controls from each replicate of the treatment and control samples to
estimate the bias in the empirical ERCC ratios (rm). These individual ERCC rm

estimates and standard errors were used to produce an overall weighted mean rm

estimate with a weighted standard error estimate. The rm estimate must be applied
as a correction factor to ERCC data before further analysis.

For RNA-Seq experiments, differential expression testing of ERCCs and
endogenous genes was performed with QuasiSeq35, using a negative binomial
dispersion trend estimated from edgeR36,37, to generate P-values for all endogenous
and ERCC features. For microarray experiments, limma38 was used for differential
expression testing. ROC curves and AUC statistics were produced using the ROCR
package39. To construct the ROC curves, the 1:1 subpool P-values were the
true-negative group for each differential ratio ROC curve.

Estimation of LODR requires the following parameters: fold change, fold;
probability, prob; and P-value threshold, pthresh. An LODR estimate is defined as
the minimum count above which a transcript with an absolute log fold change,
|log(fold)|, has at least a prob*100% chance of obtaining a q-value of FDR or less.
The choice of pthresh is based on specification of an acceptable FDR, typically this
may be FDR¼ 0.05, but for samples with higher or lower populations of
differentially expressed genes one can be more or less conservative in this choice. In
our analysis, FDR¼ 0.1 was used to compare all rat data sets and FDR¼ 0.01 was
used for all human reference RNA data sets. For each P-value obtained from
differential expression testing of the population of transcripts a q-value (estimated
FDR) is computed. The maximum P-value that has a corresponding q-value less
than or equal to FDR is defined as pthresh.

LODR estimates for each of the differential ERCC ratios were made using
locfit40 regression trends (including a pointwise 80% prediction interval) of the
relationship between abundance (log10(average count)) and strength of differential
expression (log10(P-value)). For a given fold (ratio), the LODR is the average count
where the upper bound of ratio prediction interval intersects with a chosen pthresh.
This method of estimating LODR is annotated with coloured arrows in Fig. 4. For
each LODR estimate, 90% confidence intervals were obtained via bootstrapping
(residuals from the corresponding locfit curve were repeatedly resampled to
estimate LODR).

For evaluating ratio measurement variability for the pair of samples in an
experiment, ratios of ERCC control signals for the samples were examined with
respect to the average of the sample ERCC control signals. MA plots of these data

were annotated to indicate ERCC ratio measurements above and below the LODR
estimates for each ratio. Violin plots of the density distribution of ERCC control
ratio s.d.’s (with the upper 10th percentile trimmed) are used to evaluate ratio
measurement variability for multiple experiments.

All diagnostic plots provided by the erccdashboard tool were generated based
on tools available in the ggplot2 (ref. 41) and gridExtra42 R packages.

Mapped read QC analysis. Mapped read QC metrics were produced for Life
Technologies data from Lab 7 to 9. The percentage of rRNA mapped in all UHRR
Libraries (1–5) technical replicates (all lanes and flow cells) at Lab 7-9 were
extracted from LifeScope mapping filter reports that result from sample alignment
to a reference file of filter reference sequences. A subset of UHRR Library 1-5 bam
files that were each downsampled to approximately one million read pairs using the
downSampleSam function in Picard43 were analysed using the RNASeQC analysis
tool9 to assess duplicate read rates and coverage bias across transcripts.

Data access. Sequence data used in this analysis are from the SEQC manu-
scripts14,17 and the ABRF study manuscript18. The full SEQC project data set has
been deposited in GEO and is accessible by the code GSE47792 and the full ABRF
study data set is accessible by the code GSE46876. Expression measure tables
derived from the RNA-Seq and microarray data are available (Supplementary
Data 1) so that the analysis presented here may be reproduced in R with the
erccdashboard package.
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