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Abstract: We present an analytic framework based on Self-Organizing Map (SOM) 
machine learning to study large scale patient data sets. The potency of the approach is 
demonstrated in a case study using gene expression data of more than 200 mature 
aggressive B-cell lymphoma patients. The method portrays each sample with individual 
resolution, characterizes the subtypes, disentangles the expression patterns into distinct 
modules, extracts their functional context using enrichment techniques and enables 
investigation of the similarity relations between the samples. The method also allows to 
detect and to correct outliers caused by contaminations. Based on our analysis, we propose 
a refined classification of B-cell Lymphoma into four molecular subtypes which are 
characterized by differential functional and clinical characteristics. 
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1. Introduction 

Cancer is a complex disease caused by the deregulation of gene activity. Carcinogenesis  
and -progression is accompanied by dysfunctions on multiple layers of the cellular machinery. They 
are affected by a large number of different genetic and epigenetic factors. In recent years, large-scale 
studies such as The Cancer Genome Atlas (TCGA) [1,2], The Cancer Cell Line Encyclopedia [3] or 
the International Cancer Genome Consortium (ICGC) [4] were undertaken aimed at characterizing 
cancer on the molecular and cellular level. These studies allowed to discover the heterogeneity of the 
underlying regulatory mechanisms and to assign them to molecular cancer subtypes.  

On the one hand, high-throughput technologies such as whole genome transcriptional profiling 
presently revolutionize molecular biology and provide an incredible amount of data. On the other 
hand, these techniques pose elementary methodological challenges simply by the huge and ever 
increasing amount of data produced [5 8]: researchers need adequate tools to extract the information 
content of the data in an effective and intelligent way. This includes algorithmic tasks such as data 
compression and filtering, feature selection, linkage with the functional context, and proper visualization.  

Especially, the latter task is very important because an intuitive visualization of massive data clearly 
promotes quality control, the discovery of their intrinsic structure, functional data mining and finally 
the generation of hypotheses. We aim at adapting a holistic  view on the gene activation 
patterns as seen by expression studies rather than to consider single genes or single pathways. This 
view requires methods which support an integrative and reductionist approach to disentangle the 
complex gene-phenotype interactions related to cancer genesis and progression.  

With this motivation we apply Self-Organizing Maps (SOM), a machine-learning clustering 
approach [9], to a large-scale patient expression data set of mature aggressive B-cell lymphomas 
published previously [10]. Our approach simultaneously searches for features which are differentially 
expressed and correlated in their profiles in the set of samples studied [11]. We include functional 
information about such co-expressed genes to extract distinct functional modules inherent in the data 
and attribute them to particular types of cellular and biological processes such as inflammation, cell 
division, etc. [12]. This modular view facilitates the understanding of the gene expression patterns 
characterizing different cancer subtypes on the molecular level. Importantly, SOMs preserve the 
information richness of the original data allowing the detailed study of the samples after SOM 
clustering [11].  

A central role in our analysis is played by the so-called expression  which serve as 
intuitive and easy-to-interpret fingerprints of the transcriptional activity of the samples. Their analysis 
provides a holistic view on the expression patterns activated in a particular sample. Importantly, they 
also allow identification and interpretation of outlier samples and, thus, improve data quality.  

Our application of SOM machine learning to lymphoma expression data aims at characterizing the 
heterogeneity of the genome wide expression landscapes and at describing the molecular cancer 
subtypes. In particular, we will demonstrate the capabilities of our strategy to intuitively visualize the 
individual samples as well as the subtypes in terms of individual and group-averaged portraits, 
respectively. We show how to extract functional information from the data and appropriately 
incorporate it into the analysis strategy. Further, we describe how to detect and to correct outlier 
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samples using their portraits. Finally, we propose a more detailed molecular subtype classification of 
the lymphoma samples. 

2. Data and Methods 

2.1. Expression Data and Preprocessing 

Microarray data of lymphoma are available under GEO accession number GSE4475 (data from 221 
Affymetrix HG-U133A arrays). This study used biopsy specimens of mature aggressive B-cell 
lymphoma in which at least 70 percent of all cells were tumor cells. The classification of lymphoma 
samples into different subtypes is used as provided by Hummel et al. [10]: Of all 221 lymphomas, 44 are 
assigned to the mBL (molecular  lymphoma) signature and 129 to non-mBL signature. 48 cases 
form an intermediate group, representing the transition zone between the mBL and non-mBL groups. 

For a convention we use the data as numerical matrix of dimension N × M where N is the number of 
genes measured per sample and M is the number of samples in the study. Throughout this paper a row 
of this matrix will be termed   of the respective gene. The columns on the other 
hand will be termed   referring to one sample studied. 

Raw probe intensity values of Affymetrix arrays were calibrated and summarized into one 
expression value per probe set using the hook method [13,14]. To ensure comparability, we applied 
quantile-normalization to the samples [15]. It transfers the expression states of all samples into one 
common distribution. Then, the expression values of each gene were transformed into log10-scale and 
centered with respect to the mean expression value of the particular gene averaged over all samples in 
the study [11]. This translates the expression data into fold change units and will be addressed as 
logFC = ei,m, the relative log-expression of gene i in sample m. Hence, a ei,m of zero means that the 
gene is expressed according to its mean expression value. Positive and negative values refer to  
over- and under-expression in the series of samples, respectively. 

2.2. SOM Training  

The preprocessed expression values ei,m are used to train a Self-Organizing Map (SOM). It 
translates the high-dimensional N × M expression data matrix into a K × M metadata matrix (K: number 
of so-called metagenes, in literature also referred as    or  of the SOM) of 
reduced dimensionality K << N (N = 22,283 and K = 2,500). The corresponding relative log-expression 
values of the metagenes will be termed ek,m

meta. The metagene expression profiles (in literature also 
named   or   are adapted in the iterative machine learning process to 
optimally cover the data space once the training is completed ([9], see [16] for detailed illustration). 
Therefore, the metagene profiles are slightly altered in each iteration such that they resemble the input 
gene profiles more closely. Each metagene serves as a representative prototype of a cluster of real 
genes with similar expression profiles. The metagenes  expression profile in turn approximately 
resembles the average profile over the associated real genes. Note that during training, the association 
of genes to the metagenes is not fixed and alters in a self-organizing process with the effect that the 
degree of similarity between metagenes decreases with increasing distance in the trained map. 
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Our SOM method was configured to enable the robust identification of spot modules inherent in the 
data (see below). Details were described previously [11,12,17]. In short: We have shown that the 
particular choice of the grid topology (e.g., rectangular or hexagonal) and of the map size (if chosen 
between K = 30 × 30 and K = 60 × 60 metagenes) is not crucial for downstream expression analysis. It 
provides almost identical results in terms of the expression patterns identified (see [11] in the 
supplementary material, and [16]). Variation of the SOM-size in reasonable limits can slightly alter the 
smoothness of the expression landscapes observed but not their basal properties required for further 
analysis [11,16]. Our choice of SOM size is further supported by an independent heuristic based on the 
two largest eigenvectors to estimate the map size [18]: The use of its implementation in  toolbox  
returns an optimal SOM size of K = 42 × 28 metagenes. 

In this application, we used a two-dimensional grid of size K = 50 × 50 metagenes and of 
rectangular topology, Gaussian neighborhood function [11,16], and the implementation of the 
algorithm in the R-package  [19]. 

2.3. SOM Staining 

Each  meta-state is described by the K expression values in the columns of the metadata 
matrix. They are arranged according to the underlying metagene grid and visualized by an appropriate 
color gradient: dark red reflects strong over-expression; yellow and green tones indicate intermediate 
levels with low or no differential expression; and blue corresponds to under-expression. The color 
patterns emerge as smooth textures representing the fingerprint of transcriptional activity of each 
sample. Please note that the assignment of the genes to metagene clusters and therefore also their 
position in the SOM is identical in all sample portraits. Hence, the coloring at a certain position in the 
map refers to the same genes in all individual portraits allowing the direct comparison of their 
expression levels between the maps. 

Subtype-specific mean portraits are calculated and visualized as the mean value of each metagene 
averaged over all sample portraits belonging to one subtype. They reflect subtype specific expression 
patterns while leveling out the heterogeneity of the individual expression states and outliers. 

2.4. Detection of Expression Modules: Spot Selection 

The SOM algorithm arranges similar metagene profiles in neighbored tiles of the map whereas 
more different ones are located more distantly. Adjacent metagenes thus tend to be colored similarly 
and the obtained mosaic portraits show typically smooth patterns with red and blue spot-like regions 
referring to clusters of over- and under-expressed metagenes, respectively. Metagenes located in the 
same spot are concertedly expressed across the samples studied. Consequently, distinct and  
well-separated spots in one sample collect genes of different expression profiles although concertedly 
over-expressed (or under-expressed) in this particular sample. Each spot can consequently be 
interpreted as a disjunct expression module of a group of metagenes (and of associated single genes) 
showing a unique expression profile in the data set studied. 

We define over-/under-expression spots by applying a simple 98th/2nd-percentile criterion as 
described and verified in [11,12,20 23]. It selects the respective fraction of metagenes showing 
largest/smallest expression in each sample. The percentile criterion chosen allows selection of a 
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sufficient number of candidate genes per spot on one hand and a sufficient number of relevant spots on 
the other hand. Moderate modifications of the percentile criterion used are uncritical with respect to 
the final results obtained. All spots detected in the individual portraits are transferred into one master 
map to visualize the global spot patterns of the series evaluated. This provides a simple and intuitive 
approach for the detection of expression modules inherent in the data. Note that this detection of spot 
modules provides gene clusters in an unsupervised fashion without necessity for prior definition of 
prototypes or cluster numbers. 

We further implemented and verified complementary methods of spot selection using different 
metrics and algorithms such as k-Means and hierarchical clustering based on Euclidean distance between 
the metagene profiles, and seed-clustering based on their pairwise correlation coefficient [11,12,16]. 
The basal functional impact of the modules obtained is virtually independent of the particular method 
of spot selection used although the spots can differ considerably in the number of genes and the area of 
the map included. We here apply the over-/under-expression spot selection method because it selects 
lists of strongly differentially expressed genes. Such lists are of particular interest not only in our 
analysis but also in numerous gene expression studies aiming to detect marker genes. 

2.5. Enrichment Analysis 

Co-expressed genes of each spot module can be assumed to be functionally related according to the 
-by-  principle [24]. Functional analysis aims at identifying the functional context of 

these expression modules.  
We use different approaches to estimate the enrichment of groups of predefined genes (so-called 

gene sets) in gene lists obtained independently, for example from SOM-spot analysis (see [25] for a 
critical review). Enriched gene sets indicate an association between their context and the system 
studied. A large and diverse collection of such gene sets can be derived from the Gene Ontology (GO) 
annotation database [26] using the  interface [27]. In particular, a total of 5,154 gene sets are 
included in our analysis according to the following categories: (i) 1748 GO gene sets subdivided into 
GO-terms   (1,102 sets),   (387 sets) and   
(259 sets); (ii) pathways referring to Biocarta (217 sets), KEGG (186 sets) and Reactome (430 sets) 
databases; (iii) curated gene sets taken from the literature on chemical and genetic perturbations 

  2,439 sets); (iv) tissue specific gene sets (25 sets) derived previously from a gene 
expression study on healthy human tissues [12]; and (v)  gene sets taken from the literature on 
various cancer types and subtypes (109 sets). 

Under the term   we here subsume  and combined 
 analyses (see references [12,28] for a detailed discussion). In our 

approach, overrepresentation estimates the probability of finding more members of a given gene set in 
a particular spot cluster compared with their random appearance, independent of their expression 
values. Right-tail modified Fisher exact test and the hypergeometric distribution then provide a p-value 
for each predefined gene set in each spot. This p-value reflects the overlap between the genes in a spot 
cluster and the gene set given a certain total number of genes studied [12,29,30]. We considered 
overrepresented sets with p < 10 5 which ensures reasonable adjustment for false positives in multiple 
testing. In particular, this criterion applies Bonferroni adjustment p < /n, where  denotes the desired 
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significance level and n is the number of single tests. With  = 0.05 and n  5000 (number of gene sets 
tested) one obtains p < 10 5. Note that Bonferroni adjustment represents a conservative approach 
minimizing the family wise error rate (see e.g., [31]). However, it applies to statistically independent 
tests, a requirement which is not given for many gene sets used because they contain a high percentage 
of overlapping genes. The criterion applied therefore provides a conservative lower limit of acceptable 
gene sets. 

As a second approach, -  defines the deviation between the mean expression value 
averaged over the set-members compared with the mean expression value of all genes measured in a 
sample. The so-called gene set Z-score (GSZ) combines both options of gene set overrepresentation 
and overexpression approaches [12,32]. In particular, the GSZ-score for the list of all genes studied is 
given by  

, _ ,
, var( ) /

set m all genes m
set m

m set

e e
GSZ

e N
 (1) 

where 
,set m

e  is the mean expression of the gene set members in sample m, 
_ ,all genes m

e  denotes the 

mean expression of all genes and the denominator defines the respective standard error (for a detailed 
description see [12]). We use the GSZ-score to profile enrichment of a selected gene set across all 
samples and cancer-subtypes studied. 

In addition to overrepresentation in spots and the GSZ-profiles, we generate gene set population 
maps. They visualize the distribution of the genes of a selected set in the SOM grid by appropriate 
color coding of the number of set members assigned to each metagene. It ranges from white (no gene) 
to maroon (maximum number of genes per tile observed for the particular gene set). Recall that each 
gene refers to one and the same metagene in all samples and thus occupies a fixed position in all SOM 
portraits allowing comparison between gene positions and spot positions in reference to specific 
functional modules. 

2.6. Sample Similarity Analysis 

Sample similarity analysis aims at evaluating mutual relations between the samples studied. There 
are various established approaches, for example to extract a hierarchy of similarities, to estimate 
mutual distances between the expression states or to assess the main sources of variance in the data.  

Here, we use three different metrics, namely statistical dependence, Euclidean distance and Pearson  
correlation, which are applied to the metadata instead of to the original  gene . Similarity 
analysis consequently compares the expression meta-states as characterised by the SOM portraits. The 
usage of metadata as the basal data has the advantage of improving the representativeness and resolution 
of the results as shown previously [11,20,33]. 

Independent component analysis (ICA) [34] is applied to the SOM-metadata using the R-package 
 [35]. It distributes the samples in the space spanned by the components of minimal mutual 

statistical dependence. These components point along the directions of maximum information content 
in the data which is estimated by their deviation from a (non-informative) normal distribution [34].  

As a second option, we apply the neighbor-joining algorithm (R-package  [36]) to visualize 
similarity relations based on the Euclidean distances between the samples as similarity trees [37]. The 
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distances between pairs of samples in the tree are in scale. It allows to identify h-  clusters and 
to estimate the degree of mutual dissimilarity between them. 

Pearson product-moment correlation is the third metric we use. It calculates correlation coefficients 
between the metagene states for all pairwise combinations of samples. The resulting quadratic 
correlation matrix is visualized by coloring the correlation values in the pairwise correlation map 
(PCM) using a color gradient ranging from red for positive correlation to blue for negative correlation. 
The correlation network (CN) additionally translates the correlation matrix into a graph structure. This 
undirected graph is constructed by connecting the nodes (i.e., the samples), whose pairwise correlation 
coefficient exceeds a given threshold. Here, we chose rthreshold = 0.5, which ensures a relatively sparse 
but still fully connected graph structure (see description in Supplementary File 1). It provides a 
network-like overview about the correlation structure of the expression landscapes of the samples. It is 
capable to intuitively display multivariate relations in contrast to univariate dendrograms. The lengths 
of the edges in the CN approximately scale inversely with the respective degree of correlation. 

2.7. Correction of Biased Data 

Systematic deviations give rise to biased data. They can be caused, for example, by individual 
specifics of the expression characteristics of the patients not related to the disease, by the inaccurate 
biopsy of the tumor cells leading to contaminations of the samples with healthy tissue or by systematic 
variations in the sample preparation process. Inspection of the individual SOM portraits combined with 
similarity and gene set enrichment analyses provide a framework of hand-in-hand options to detect and 
to correct strongly biased samples: Firstly, outlier spots can be detected in the portrait gallery and 
subsequently analyzed for their functional context in terms of overrepresented gene sets. Secondly, 
outlier samples can be identified in the correlation network similarity plot and then further evaluated 
by functional spot analysis. Gene sets found to be associated with outlier spots and/or samples are then 
simply excluded from further analyses leading to corrected expression portraits. This procedure can be 
repeated for different putative sources of systematic errors. 

2.8. Molecular Subtypes Derived from Prototype-Guided k-Means and from Consensus Clustering  

Identification of distinct molecular phenotypes is a common and important question in cancer 
research. A previous study of lymphoma data classifies the samples into the main subtypes molecular 
Burkitt s Lymphoma (mBL), non-mBL and an intermediate group [10]. Both, inspection of SOM 
portraits and their similarity analyses suggests the further refinement of this classification into four 
subtypes, namely mBL*, non-mBL*, intermediate-A and intermediate-B (see below). 

We applied a modified prototype-  k-Means clustering of the metadata to segregate the 
samples into these four subtypes. k-Means is an iterative algorithm which iteratively assigns the 
samples to so-called cluster prototypes showing the minimal mutual Euclidean distance and 
subsequently computes new prototypes as the centroids of the members of each cluster [38]. k-Means 
requires predefinition of a desired cluster number, while the initial prototypes are usually chosen 
randomly or initialized from the data [39].  

The SOM portraits now constitute another option to initialize the prototypes: they can be 
established using selected expression patterns observed in the portraits such as the most prominent 
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overexpression spots. Particularly, we define initial prototypic expression portraits showing a selected 
spot pattern for each subclass with values k,m

meta  for metagenes within the spot and  for 
metagenes outside. These prototypic spot patterns are then used to assign the samples to the respective 
clusters in the standard k-Means algorithm. Then, a bootstrapping approach is used to estimate the 
robustness of the assignment of samples to the subtypes. Therefore, k-Means clustering is repeatedly 
applied to a subset of samples chosen randomly from the complete set of samples. The mean metagene 
expression states of the subtypes are used as initial cluster prototypes. The fraction of proper 
assignments of samples in agreement with their actual class assignment then defines a robustness score 
of each sample: a bootstrap stability score of  means that the respective sample is always found in 
the correct subtype, while a score of  means that the sample is assigned properly in only 50% of 
the resampling repetitions. 

In addition, we applied consensus clustering [40] to validate the results of our k-Means approach by 
an independent method. Consensus clustering aims at reaching a consensus on the number of classes in 
the data and at judging reliability of the class assignment of the samples. We applied the R-package 

 [41] for portioning the samples into k classes using hierarchical clustering 
with k ranging from two to six. For each k, one obtains a consensus matrix, reflecting the fraction of 
common class memberships for all pairwise combinations of samples estimated in a series of 
resampling runs (details are given in [40]). It is visualized by means of a clustered heatmap collecting 
samples frequently found in one class into blue squares along the diagonal. The cumulative distribution 
function (CDF) aggregates the consensus values up to a certain fractional co-occurrence of sample 
pairs. The CDF thus reflects the  of  of a consensus matrix using one curve such 
that clusterings with different k can be directly compared with the purpose to identify the optimal class 
number [40]. The incremental change between CDF curves with increasing k serves as a measure to 
judge whether increasing the class number leads to a marked increase of clusters  stability or not.  

2.9. Additional Expression and Phenotypic Data  

Gene expression data from germinal center B-cell line samples and tissue samples of tonsils were 
taken from reference [42]. After preprocessing as described above, these data were co-trained with the 
lymphoma data to evaluate the cell of origin characteristics of the lymphoma samples. Recently 
published patient phenotypic data were used to characterize the newly defined subtypes in the cohort 
studied [43]. These included data from immunohistochemical staining against CD10, BCL2, BCL6, 
MUM1, data from interphase fluorescence in situ hybridization (FISH) for IGH, MYC, BCL6 and 
BCL2 loci, overall survival, age and gender. 

3. Results and Discussion 

3.1. SOM Expression Portraits of Lymphoma Samples and Subtypes 

SOM machine learning transforms the whole genome expression pattern of the single   
genes into metagene expression data. Thereby, the number of single genes exceeds the number of 
metagenes by about one order of magnitude (N = 22,283 and K = 2,500). We visualize the expression 
meta-state of the samples as mosaic images, consisting of 50 × 50 tiles each representing one 



Biology 2013, 2 1419 
 

 

metagene. These metagenes serve as representatives of clusters of co-expressed single genes the 
number of which usually varies from metagene to metagene. The color gradient of the portraits was 
chosen to visualize over- and under-expression of the metagenes in each particular sample: red to 
green colors indicate over-expression with decreasing strength, while blue to green colors indicate 
under-expression. The colored texture of each mosaic thus individually characterizes the gene 
expression landscape in each sample. 

Figure 1 shows the expression portraits of selected lymphoma samples arranged according to their 
previous classification into subtypes [10]. The individual portraits reveal a handful of clusters of  
co-expressed metagenes frequently observed. These so-called over- and under-expression spots 
selectively characterize the different lymphoma subtypes: samples of the mBL and non-mBL subtypes 
are mostly characterized by spots of overexpressed metagenes in top-right and bottom-left corners of 
the map, respectively. However, many additional spots can be observed in the portraits, indicating 
additional functional modules activated in the respective samples (see below). Samples of the 
intermediate subtype show more volatile patterns with over-expressed metagenes frequently tending to 
occupy the top-left and bottom-right corners of the SOM. The full gallery of the 221 SOM portraits is 
given in Supplementary File 2. Supporting maps characterizing the population of metagene clusters 
with single genes and the variance of the expression profiles of the metagenes are provided in 
Supplementary File 1. 

Figure 1. Self-organizing map (SOM) gallery of lymphoma subtypes with a resolution of 
50 × 50 metagenes: The small mosaic images refer to selected individual tumor samples 
assigned to the mBL, non-mBL and intermediate subtypes. The larger images represent the 
respective mean subtype portraits (see methodical section). Dark red/blue colored 
metagenes refer to the 90th/10th-percentile of expression in each sample, respectively. The 
complete gallery of all sample portraits is available in Supplementary File 2. 
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We generate mean subtype portraits by averaging the expression values of each metagene over all 
the subtype members. This averaging cancels out the highly fluctuating, individual features and, thus, 
amplifies consistent subtype-specific features. In support of the observations from the individual 
portraits we found that the mBL and non-mBL subtypes are characterized by two spots in opposite 
corners of the map: one spot in the top-right corner is over-expressed and the other one in the  
bottom-left corner is under-expressed in mBL samples and vice versa in non-mBL samples, revealing 
the antagonistic character of their expression patterns. These subtype-specific spots collect highly 
populated, highly variable and well resolved metagenes (see Supplementary File 1). 

In summary, SOM expression portraits reflect the individual expression landscapes of each sample 
in terms of characteristic color textures which enable visual perception of subtype-specific spot-like 
features representing clusters of differentially and co-expressed genes. 

3.2. Characterizing the Expression Modules: Spot Analysis 

Standard analysis tools usually evaluate the whole expression states of the individual samples to 
perform similarity or cluster analyses, or to generate lists of differentially expressed genes. Such global 
comparisons might overlook subtle effects due to individual properties of small groups of genes. These 
details are however projected into the color textures of the individual SOM portraits which change 
from sample to sample and can be assessed by means of feature selection (see [12] for a detailed 
review). The most prominent patterns are the over- and under-expression spots formed by neighboring 
metagenes of similar profiles which, in turn, represent clusters of correlated and thus potentially  
co-regulated genes strongly over- and/or under-expressed in a subset of samples. 

We analyze the spot patterns in order to identify specific properties of the lymphoma subtypes. 
Figure 2a shows the so-called over-expression summary map which collects all over-expression spots 
observed in the individual sample portraits into one master map (see also [11]). Each disjunctive 
region of this map exceeding the 98th-percentile threshold defines one global overexpression spot. It 
represents a distinct expression module inherent in the data. In total, we identified 23 over-expression 
spots labeled with capital letters  (Figure 2b). 

Please note that our spot selection algorithm neglects the abundance of each spot in the individual 
portraits and identifies both rare (e.g., observed in only one sample) and frequent spot modules. The 
over-expression heatmap in Figure 2c visualizes the spot expression profiles, i.e., the mean expression 
level of the metagenes in each of the spots across all samples. The colors range from blue representing 
the lowest mean expression values, to red representing the highest values. The samples are arranged 
according to their subtype classification. The heatmap provides an overview of the degree of  
subtype-specific expression in each of the spot modules. For example, spots  and partly also spot 

 are selectively over-expressed in samples of the mBL subtype, while spot  is characteristic for 
the non-mBL subtype. Contrary, more ubiquitous spots as  as well as rare spots as  or  lack 
of subtype-specific overexpression. Note that frequent spots are usually located in the peripheral part 
of the map (i.e., in the corners and along the edges) whereas rare spots tend to accumulate in the 
central part. 
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Figure 2. Spot module characteristics: (a) The over-expression summary map collects all 
over-expression spots observed in the individual portraits into one map. Subtypes 
frequently showing the respective spots are indicated. (b) The over-expression spot map 
defines the spots used for further analysis. Regions beyond the 98th-percentile threshold of 
metagene expression are selected. The spots are assigned by large capital letters. The blue 
rectangles include highly correlated spots (r > 0.7). The blue and red dashed lines connect 
correlated (0.4 < r < 0.7) and anti-correlated (r < 0.6) spots, respectively. (c) The 
overexpression heatmap shows the mean expression of the spots across all samples in the 
data set. The samples are sorted according to their subtype. (d) The under-expression 
summary map collects all under-expressed spots observed in the individual portraits. Note 
the antagonistic nature of mBL and non-mBL expression: spots over-expressed in mBL 
become under-expressed in non-mBL and vice versa (compare with panel a). 

 

We use the spot information and the mean subtype portraits to assign subtype labels to the most 
prominent and specific spot modules (Figure 2a): Spots  and  are ascribed to mBL while spot 

 is prominent in non-mBL. Those three spot modules contain marker genes over-expressed in the 
respective subtypes as validated below. Spots  and  also frequently observed in the sample 
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portraits, are assigned to the intermediate subtype. Interestingly, they constitute two alternative 
intermediate states located in between the main-subtypes mBL and non-mBL. They are characterized 
either by spot  or by spot  as indicated by the arrows in Figure 2a. 

Please note that the training algorithm distributes the metagenes in such a way that strongly 
correlated profiles are located at adjacent positions in the map whereas metagenes with anti-correlated 
profiles tend to occupy more distant regions, e.g., in the opposite corners of the map. This rule also 
applies to the spots detected. In order to discover the covariance between the spot modules we 
calculated Pearson correlation coefficients for all pairs of spot profiles. It turned out that, as a rule of 
thumb, neighboring spots are strongly positively correlated and spots located in opposite corners of the 
map are often strongly anti-correlated. The results of this correlation analysis are visualized in Figure 2b. 
One sees that, for example, the mBL marker spots  and  are highly correlated and usually appear 
together in the sample portraits whereas the anti-correlated over-expression spots  and  will not 
be observed together in the same expression portrait.  

For this dataset, we also detected 11 global under-expression spots emerging as blue regions in the 
SOM portraits. The under-expression summary map is shown in Figure 2d. Position and size of most 
of the detected under-expression spots agree with those of the over-expression spots. Hence, 
overexpression of the respective metagenes in part of the samples changes into under-expression in 
other samples. For the analyses described in this paper, we therefore use only the over-expression spots 
detected without loss of essential information. Interestingly, virtually no blue under-expression spot 
was detected in the central area of the map indicating that the rare over-expression spots do not show 
this dualism. Below we will show that these spots potentially constitute clusters of outlier genes the 
expression of which is affected by bias effects. 

In summary, the heterogeneous expression patterns observed in the individual portraits can be 
condensed to a few major expression modules represented by over- and under-expression spots. This 
way the relevant dimension of the data set is reduced by three orders of magnitude from about 20,000 
single genes to approximately 12 spot modules. 

3.3. Mining the Functional Context: Gene Set Enrichment Analysis 

Each global overexpression spot module represents a cluster of potentially co-regulated genes. We 
applied gene set overrepresentation analysis to each spot-cluster taking into account a collection of 
more than 5,000 predefined gene sets referring to different GO-categories, pathways, diseases, human 
tissues and specific cell experiments (see methodical section). For each spot we obtained a list of gene 
sets ranked with increasing p-value estimating the probability that genes of the set are found within the 
spot by chance. 

Based on the functional context of the overrepresented sets obtained we assign a short notation to 
each of the spots (see Figure 3a). Some spots are obviously related to processes associated with general 
hallmarks of cancer such as  and   (spots  and  respectively). Panel 
b of Figure 3 depicts the GSZ-expression profiles (left part) and the population maps (right part) of 
those two leading gene sets. The profiles clearly reflect the fact that the respective processes are 
selectively over- or under-expressed in a subtype-specific fashion. While   is 
activated in the non-mBL subtype, genes annotated to the gene set   are active in the mBL 
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subtype. The respective gene set population maps reveal that the associated genes accumulate in the 
regions of spots overexpressed in the respective subtype, as expected. 

Figure 3. Functional analysis: (a) The functional context of the most abundant spots is 
assigned according to the topmost overexpressed gene sets in each of the spots. (b d)  
GSZ-profiles and population maps are shown for gene sets accumulating in the mBL and 
non-mBL specific overexpression spots as indicated by the red ellipses (panel b), for  
mBL-vs-non-mBL signature sets published previously [10] (c) and for sets accumulating in 
rare spots (d). 

 

Neighboring spots of strongly correlated profiles can be assigned to related biological processes: the 
  spot is surrounded by spots assigned to  factor   and 

 according to the most overrepresented gene sets in each of the spots. Note that, although 
related, these neighboring spots are usually characterized by subtle differences in their expression 
profiles and presumably also by fine differences in the functional context of the overrepresented gene 
sets. Population maps and overexpression spot maps therefore represent complementary tools for 
discovering the functional context of the expression landscapes. The results so far show that the 
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lymphoma samples split into pairs of subtypes differing by the antagonistic activation of processes 
related to  and   on one hand and to   and the 

 and translational  on the other hand (non-mBL-vs-mBL).  
To validate the subtype-specific spot patterns identified above, we included the signature set that 

differentiates between mBL and non-mBL subtypes provided by Hummel et al. [10] (see Figure 3c). 
As expected, genes of this set clearly accumulate in the subtype-specific spots  and  assigned to 
mBL and non-mBL, respectively. 

Another important question is about the possible origin of the rare spots in the central part of the 
map. In Figure 3d, we show the characteristics of two gene sets related to tissue specific gene 
expression in tonsils [11,12] and to drug response  metabolism, cytochrome P450   
see [44]), respectively. Their genes strongly accumulate in localized regions of the map agreeing with 
the positions of the rare spots  and  respectively.). Both gene sets are overexpressed in only few 
samples suggesting that the respective samples are outliers contaminated either with healthy tissue or 
affected by patient specific medication. Both effects are not related to the cancer studied and thus 
reflect systematic biases of the respective expression patterns. 

3.4. Analyzing the Sample Similarity Space 

We applied two standard sample similarity analyses, namely independent component analysis 
(ICA) and neighbor-joining clustering (NJ), to visualize and to analyze the mutual relations between 
the samples. In the two-dimensional ICA-plot shown in Figure 4a, the samples distribute along the first 
two components of minimal statistical dependency. It reveals basically three clusters referring to the 
three subtypes, however without clear boundaries limiting them. It also shows that the three subtypes 
mainly separate along the IC1-coordinate, whereas intra-subtype variability mainly spreads along the 
IC2-coordinate. 

Figure 4. Sample similarity analysis: (a) Independent component analysis (ICA) of 
lymphoma samples. The distribution of the samples is shown in the space spanned by the 
two leading independent components. (b) The neighbor-joining tree projects the sample 
similarity relations into a dendrogram. The bush-like structures reveal a finer granularity of 
subtypes beyond the three classes considered so far. 
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The NJ algorithm visualizes sample similarity relations as seen by Euclidean distances. The 
obtained star-like dendrogram shown in Figure 4b identifies -  clusters containing mostly 
samples of the same subtype. Interestingly, each of the different subtypes distributes over more than 
one of such bush-like branches reflecting its intrinsic heterogeneity in terms of disjoint clusters. 

In summary, the ICA-analysis allows for estimating the mutual dependence of the expression 
changes associated with the different subtypes. We found a one-dimensional distribution of the 
lymphoma subtypes, supporting the  classification into the three subtypes considered so 
far. The transversal heterogeneity however remains unconsidered in this case. The NJ-dendrogram, on 
the other hand, reveals finer details in terms of disjunct substructures potentially reflecting a finer 
granularity of subtype clusters. 

3.5. Sample Correlation Structure 

coefficients for all pairwise combinations of samples. The pairwise correlation map (PCM) given in 
Figure 5a visualizes the correlation coefficients for all sample pairings which are arranged according to 
their subtype assignments (see the color bars along the borders of the map). The compact red square of 
mBL sample couples reflects the strong similarity between their expression landscapes whereas the 
blue off-diagonal area formed between the mBL and non-mBL samples indicates their anti-correlated 
expression states. Note that the pairings between non-mBL samples, although correlated, reveal a 
much more fuzzy pattern due to the more heterogeneous expression states compared to the mBL 
subtype. The samples of the intermediate subtype either correlate with the mBL or non-mBL samples 
or with both in some cases. 

The correlation matrix can be transformed into the correlation network (CN) shown in Figure 5b. In 
this graph representation, the samples are represented by nodes connected by edges if the mutual 
correlation coefficient exceeds a certain threshold. The length of the edges approximately inversely 
scales with the respective correlation strength. Visual inspection of the CN shows that the mBL and 
non-mBL samples accumulate into well separated clusters whereas samples of the intermediate 
subtype heterogeneously spread over the region between these two clusters. Interestingly, these 
intermediate samples distribute along two disjunctive branches of the CN, which both link the mBL 
and non-mBL clusters. These two separate branches also include a fraction of the mBL and non-mBL 
samples (see the purple lines in Figure 5b roughly separating the clusters and branches). This 
distribution of the intermediate subtype samples reflects the heterogeneous spot characteristics of the 
subtypes as discussed above. 

A few samples are located far away from their subtype-specific cluster and/or from the majority of 
the other samples in the CN. Those samples are usually characterized by rare or unique spots as 
indicated in Figure 5b. We will address this issue in the next section more in detail. 

-
of alternating compact and more fuzzy clusters. The former ones refer to the main subtypes and the 
latter ones to two distinct groups of samples mainly assigned to the intermediate subtype. The mutual 
correlation analysis as seen by the CN in combination with the SOM portraits thus provides additional 
information complementing the other similarity analyses applied. 
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Figure 5. Pairwise correlation analysis of all lymphoma samples: (a) The pairwise 
correlation map (PCM) visualizes the correlation coefficients for all pairs of samples. The 
samples are arranged according to their subtype membership as indicated by the color bars. 
In the heatmap, red colors indicate positive, blue colors negative correlations between the 
samples. (b) The correlation network (CN) translates the PCM into a graph structure. The 
nodes are given by the samples and the edges connect positively correlated sample pairs  
(r > 0.5). Mean subtype portraits are given within the figure (large maps). Outlier nodes are 
highlighted by arrows. The SOM portraits of the respective samples are shown by small 
maps. The red circles and the spot letters indicate the outlier spots differing from the subtype 
specific patterns (compare these individual sample portraits with the mean subtype portraits). 

 

3.6. Detection and Correction of Outliers 

Inspection of the CN in Figure 5b reveals a series of samples which are located outside of the main 
network body. The portraits of these outlier samples reveal overexpression spot patterns deviating 
from the subtype specific patterns identified in terms of their mean SOM portraits. Particularly the 
spots   and  are identified in the outlier sample portraits (red circles in Figure 5b; see Figure 2b 
for spot-letter assignments). Here, we exemplarily focus on spot , located in the bottom-left region 
of the SOM and strongly overexpressed in samples MPI-002, MPI-208 and MPI-213 (see Figure 5b). 
The topmost enriched gene set in this spot is the -set. It was extracted as the tonsil-signature 
from a large expression data set of healthy human tissues previously analyzed with our SOM  
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pipeline [11,12]. Enrichment of this set suggests that overexpression of spot  is caused by 
contamination of the tumor biopsy with adjacent healthy lymph node tissue. 

Panel a in the left part of Figure 6 shows the GSZ-profile and the population map of the  set. 
The GSZ-profile reveals very strong overexpression of the set in a number of samples independent of 
their subtype assignment. The corresponding genes mainly accumulate in spot  Selected samples 
which possess this particular spot in their portraits are shown in Panel c. They can already be identified 
as potential outliers by simple visual inspection of the SOM portrait gallery (Supplementary File 2). 
We highlighted the samples in the GSZ-profile (Panel a) and in the CN (Panel b) by arrows. Note 
however that not all of these samples protrude as clear outliers in the CN. Despite the strong 
overexpression of the contamination spot  the overall expression state of e.g., samples MPI-208 
and MPI-213 obviously resemble those of the unbiased samples. 

Figure 6. Correction of outlier samples contaminated with healthy lymph node tissue. The 
left and right parts of the figure refer to the uncorrected and corrected data, respectively.  
(a) GSZ-profile and population map of the  gene set: The signature is not characteristic 
for one of the subtypes and their genes accumulate in spot  of the map. (b) Correlation 
network of the lymphoma data set. (c) SOM portraits of selected outlier samples. The arrows 
point to the position of these samples in the CN and in the GSZ-profile. After correction, the 
expression landscape of the selected samples reveals subtype-specific signatures.  
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In a simple correction step we removed the genes included in the outlier spots from the whole data 
set (see red circle in the population maps in Figure 6). This procedure can be repeated for the other 
contamination spots identified: For example, spot  was found to be related to drug metabolism 

  see Figure 3d and sample MPI-090 in Figure 5b), presumably due to individual 
medication of the patient. Spots  show an intense increase in expression of the G-antigen-family 
for unknown reasons (samples MPI-060, MPI-061 and MPI-195 in Figure 5b). 

After removing strongly biased genes from the training data, we generated a new SOM. Note that, 
depending on the purpose, also re-evaluation of only parts of the analyses may be sufficient. The right 
part of Figure 6 shows the results after correction for tonsil-contamination accumulated in spot  
The corresponding GSZ-profile shows a more uniform expression of the gene set after correction. The 
respective sample portraits now show the characteristic spot signatures of the respective subtypes, i.e., 
of mBL for MPI-002 and non-mBL for MPI-208 and MPI-213. Especially the outlier sample MPI-002 
is now located within the mBL cluster in the CN, such that it attains a more compact shape. 

In summary, the combination of individual portraits, enrichment analysis and the correlation 
network provides a framework for easy and intuitive detection of outlier spots and samples. After 
correction, more reliable expression landscapes of the samples are obtained. 

3.7. Alternative Subtyping of B-Cell Lymphoma 

Our analysis so far suggests that the samples assigned to the intermediate subtype split up into two 
separate branches which also include samples previously assigned to the mBL and especially the  
non-mBL subtypes. These two branches are characterized by overexpression spots in the bottom-right 
and top-left part of the expression portraits, respectively (compare the first and the second row of the 
intermediate sample portraits in Figure 1). Note that these spot modules are frequently overexpressed 
in the intermediate-type samples (see spots  and  Figure 2a c). Both, neighbor-joining clustering 
and correlation network analyses clearly show two distinct sample groups forming two continuous 
transition ranges linking the compact mBL and non-mBL clusters. These transition ranges include 
samples of the intermediate and also of the mBL and non-mBL types (Figures 4b and 5b). These 
results suggest the existence of four subtypes partly differing from the classification into three 
subtypes discussed so far. In order to further verify this hypothesis, we applied our prototype-guided  
k-Means algorithm to cluster the samples into four groups (see methods section). The algorithm uses 
initial prototypes of the expression landscapes which are given by artificial spot patterns referring to 
the four desired subtypes: spot K  initializes the new mBL-like subtype mBL*, spot O  the  
non-mBL-like subtype non-mBL* and spots J  and Q  the two new intermediate subtypes 
intermediate A and intermediate B, respectively. Figure 7a shows the obtained four cluster centroids 
after convergence of the k-Means algorithm. They represent the mean portraits of the four new 
subtypes mBL*, intermediate A, intermediate B and non-mBL*. Note that the mean portraits of the 
mBL* and non-mBL* subtypes closely resample that of the initial mBL and non-mBL classes, 
respectively (compare with Figure 1). In contrast, the mean portraits of the new intermediate A and 
intermediate B subtypes clearly differ from that of the initial intermediate subtype and from that of the 
mBL* and non-mBL* patterns. 
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Figure 7. k-Means clustering into four subtypes: (a) Mean expression portraits of the four 
new subtypes. The green arrows indicate the spot pattern transitions from mBL to non-mBL 
via intermediate A or B. (b) CN colored according to the new subtypes obtained.  

 

We re-colored the CN plot according to the new subtype classification (Figure 7b). The mBL* and 
non-mBL* clusters are more compact compared to the initial mBL and non-mBL clusters (compare 
with Figure 5b). The expression landscapes of the new groups obtained are obviously more 
homogeneous (see the complete gallery of new assigned sample portraits in Supplementary File 3). 
The samples of the two intermediate subtypes accurately accumulate along the two separated branches 
linking the mBL* and non-mBL* clusters except a certain region of overlap in the center of the CN. 
Further sample similarity analyses based on the four subtype classification support these results (see 
Supplementary File 1). 

In the next step, we compare the robustness of the old and new subtype cluster assignments by 
applying the bootstrap clustering approach described in the methods section. It returns the bootstrap 
stability score for each sample in the range of [0, 1] for unstable to very stable assignments. For the 
previous classification into three subtypes, the stability scores of the intermediate and mBL subtype 
samples show a broad distribution with scores of 0.5 and below (see Supplementary File 1 for details). 
The new four subtype classification is clearly more robust, reflecting a more consistent and stable 
clustering of the samples. Only a small number of relatively uncertainly assigned samples are found 
even in the transition ranges between the different clusters. 

3.8. Consensus Clustering of B-Cell Lymphoma 

To further validate our new subtypes we applied consensus clustering to estimate the optimal 
number of classes in the lymphoma data by an independent method which assumes class numbers k 
ranging from two to six. Figure 8a c shows the heatmaps of the consensus matrix for two to four 
classes, respectively. Pairs of samples, robustly assigned to the same cluster, accumulate within one of 
the blue squares along the diagonal of the heatmap. The two-class approach basically divides the 
samples into an mBL-like and a non-mBL-like cluster (Figure 8a). The three-class approach essentially 
splits the samples into the mBL/intermediate/non-mBL subtype structure as proposed in [10] (Figure 8b). 
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The four-class consensus clustering resembles our new subtype classification with the two 
intermediate subtypes (Figure 8c). The five- and six-cluster approaches virtually do not change this 
result: the additional fifth and sixth clusters collect only one and three outlier samples, respectively 
(data not shown). 

The cumulative distribution functions (CDFs) allow judging the incremental gain of increasing the 
number of clusters (see Figure 8d). The obtained CDFs support the four-class approach: the CDF 
converge for k > 3 showing only small incremental changes with further increasing k. Note that the 
increment between k = 4 and 5 is caused by a single-sample cluster. Hence, consensus clustering 
confirms our four-subtype classification. 

Figure 8. Consensus clustering: (a c) Cluster-heatmaps of the consensus matrices for class 
numbers ranging from two to four, respectively. Pairs of samples frequently found in one 
joint class accumulate in the blue regions along the diagonal of the map. (d) Cumulative 
distribution function (CDF) for class numbers ranging from two to six. 

 

3.9. Functional, Molecular and Phenotypic Characterization of the New Subtypes 

The four new subtypes are defined by their distinct expression patterns and their particular 
functional contexts, i.e., they represent molecular subtypes. The question arises if these molecular 
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subtypes associate with selected genetic, clinical, or alternative molecular phenotypes collected 
independently [10]. We used these data and calculated the frequency distribution of patients for each 
of the characteristics over the four subtypes. Table 1 reveals associations between these characteristics 
and the subtypes in terms of enriched or depleted patient numbers (p-values are obtained from  
exact test). The full table of patient characteristics is provided as Supplementary File 4. 

Table 1. Phenotypic and molecular characterization of the four new subtypes. 

Characteristic a Lymphoma subtype p-value b 

mBL* intermediate A intermediate B non-mBL * 

Total number of patients 221 62 (28%) 42 (19%) 44 (20%) 73 (33%) 

Age <20 y 32 (14%) 26 (42%) 0 (0%) 1 (2%) 5 (7%) <0.001 

21 65 y 92 (42%) 27 (44%) 14 (33%) 22 (50%) 29 (40%) 

>66 y 95 (43%) 9 (15%) 27 (64%) 20 (45%) 39 (53%) 

Gender male 127 (57%) 40 (65%) 26 (62%) 23 (52%) 38 (52%) 0.44 

female 91 (41%) 22 (35%) 15 (36%) 20 (45%) 34 (47%) 

Diagnosis Burkitt's lymphoma 15 (7%) 15 (24%) 0 (0%) 0 (0%) 0 (0%) <0.001 

Atypical Burkitt s 

lymphoma 20 (9%) 16 (26%) 3 (7%) 0 (0%) 1 (1%) 

Diffuse large-B-cell 

lymphoma 164 (74%) 24 (39%) 37 (88%) 38 (86%) 65 (89%) 

 Mature aggressive B-cell 

lymphoma, unclassifiable 18 (8%) 5 (8%) 2 (5%) 5 (11%) 6 (8%) 

 

Ann Arbor stage I or II 72 (33%) 25 (40%) 9 (21%) 15 (34%) 23 (32%) 0.37 

III or IV 82 (37%) 19 (31%) 15 (36%) 22 (50%) 26 (36%) 

Response to 

treatment Complete remission 68 (31%) 27 (44%) 8 (19%) 10 (23%) 23 (32%) 0.40 

Complete remission, 

unconfirmed 18 (8%) 4 (6%) 2 (5%) 6 (14%) 6 (8%) 

No change 2 (1%) 0 (0%) 0 (0%) 1 (2%) 1 (1%) 

Partial response 16 (7%) 1 (2%) 3 (7%) 5 (11%) 7 (10%) 

Progress 24 (11%) 7 (11%) 4 (10%) 7 (16%) 6 (8%) 

Molecular 

classification mBL 44 (20%) 44 (71%) 0 (0%) 0 (0%) 0 (0%) <0.001 

Hummel et al. [10] intermediate 48 (22%) 18 (29%) 11 (26%) 10 (23%) 9 (12%) 

non-mBL 129 (58%) 0 (0%) 31 (74%) 34 (77%) 64 (88%) 

GCB-ABC 

classification Activated B-cells 58 (26%) 2 (3%) 26 (62%) 15 (34%) 15 (21%) <0.001 

Wright et al. [45] Germinal center B-cells 120 (54%) 53 (85%) 10 (24%) 18 (41%) 39 (53%) 

unclassified 43 (19%) 7 (11%) 6 (14%) 11 (25%) 19 (26%) 

Translocations 

MYC translocation IG-MYC 60 (27%) 49 (79%) 1 (2%) 6 (14%) 4 (5%) <0.001 

non-IG-MYC 15 (7%) 6 (10%) 5 (12%) 2 (5%) 2 (3%) 

neg 144 (65%) 7 (11%) 36 (86%) 35 (80%) 66 (90%) 

BCL6 Break pos 37 (17%) 2 (3%) 9 (21%) 11 (25%) 15 (21%) 0.002 

neg 179 (81%) 59 (95%) 32 (76%) 31 (70%) 57 (78%) 

IGH Break pos 115 (52%) 53 (85%) 11 (26%) 23 (52%) 28 (38%) <0.001 
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Table 1. Cont. 

Characteristic a Lymphoma subtype p-value b 

neg 103 (47%) 9 (15%) 30 (71%) 20 (45%) 44 (60%) 

t(14;18) 

translocation pos 25 (11%) 5 (8%) 2 (5%) 6 (14%) 12 (16%) 0.19 

 neg 193 (87%) 57 (92%) 40 (95%) 37 (84%) 59 (81%)  

Immunohisto-

chemistry         

CD10 low 114 (52%) 3 (5%) 33 (79%) 26 (59%) 52 (71%) <0.001 

high 96 (43%) 56 (90%) 6 (14%) 14 (32%) 20 (27%) 

BCL2 low 62 (28%) 38 (61%) 2 (5%) 7 (16%) 15 (21%) <0.001 

high 153 (69%) 22 (35%) 39 (93%) 35 (80%) 57 (78%) 

BCL6 low 34 (15%) 5 (8%) 9 (21%) 7 (16%) 13 (18%) 0.21 

high 168 (76%) 52 (84%) 29 (69%) 32 (73%) 55 (75%) 

MUM1 low 66 (30%) 29 (47%) 7 (17%) 8 (18%) 22 (30%) 0.001 

high 139 (63%) 27 (44%) 33 (79%) 32 (73%) 47 (64%) 

KI67 low 125 (57%) 17 (27%) 26 (62%) 26 (59%) 56 (77%) <0.001 

high 89 (40%) 44 (71%) 15 (36%) 14 (32%) 16 (22%) 
a Percentages refer to the total number of samples. Parameters are not available for all samples. Data are 
taken from ref [43]; b p-values are calculated using  exact test. 

For mBL* and non-mBL* one finds analogous frequency distributions of a series of characteristics 
as described in previous studies, e.g., the age dependency [10], the effect of the MYC-gene 
translocation [10], different immune-phenotypes [46] and the GCB-ABC-signature [45]. Nearly 90% 
of the lymphoma assigned to the non-mBL* and to intermediate A&B subtypes are classified as 
diffused, large B-cell lymphoma (DLBCL) suggesting a close similarity between these three subtypes. 
A series of characteristics such as the IG-MYC status and immune-phenotypes CD10, BCL6 and 
BCL2 support this result.  

However, the new intermediate A and intermediate B subtypes also show specific properties. 
Interestingly, the tumors with the activated B-cell (ABC) signature are clearly overrepresented in the 
intermediate A subtype, whereas the alternative germinal center B-cell (GCB) signature clearly 
depletes in this subtype. They also show differential characteristics with respect to the appearance of 
genetic aberrations (MYC translocation and IGH break) and to the BCL2 immune-phenotype: Firstly, 
the IG-MYC translocation is more frequently found in the intermediate B subtype compared with the 
intermediate A and the non-mBL* lymphoma. Secondly, intermediate A lymphomas less frequently 
show the IGH break and the BCL2+ immuno-phenotype than the other subtypes. Thirdly, intermediate B 
and non-mBL* lymphomas possess slightly enriched populations of t(14;18)(q32;q21) translocations, 
which juxtapose the BCL2 oncogene to the immunoglobulin heavy chain locus (IGH). 

In the supplementary text (Supplementary File 1), we provide a thorough analysis of the expression 
signatures of the subtypes, the co-expression network of the spot modules and their functional impact. 
It turned out that each of the subtypes is characterized by different hallmarks of cancer, e.g., 
proliferation and high transcriptional and translational activity in mBL*; activated immune response 
and inflammation in non-mBL*, innate immunity in the intermediate A subtype and up-regulated 
expression of common cancer gene signatures [47] in the intermediate B subtype. Generic, MYC-related 
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poor prognosis gene signatures [48] are associated with the mBL* and, to a lesser degree, intermediate 
A subtypes. Moreover, we found that intermediate A subtype lymphomas show expression signatures 
of activated B-cells and strong dissimilarity with expression landscapes of germinal center B-cells and 
healthy lymph node tissue suggesting different cell-of-origins. On the level of gene regulation, the 
decomposition of lymphoma into four subtypes obviously further diversifies into different modes which, 
in turn, reflect driving effects on the genetic and epigenetic levels. The understanding of these molecular 
mechanisms thus requires the combined analysis of genetic, epigenetic and transcriptional data.  

Finally, we generated Kaplan-Meier diagrams to estimate the probability of subtype specific overall 
patient survival as a function of time [49]. Figure 9a,b show the curves for the three and four subtype 
classifications, respectively. Based on the original definition by Hummel et al., patients with mBL 
lymphomas show significantly better survival rates as intermediate and non-mBL patients (p < 0.001 
in log-rank test, see also [10]). In contrast, our new classification now reveals that both mBL* and  
non-mBL* patients show better survival rates than patients of the intermediate A & B subtypes. 
Assignment of lymphoma to either of the two intermediate subtypes roughly halves the survival rate. 
The diversification of lymphoma subtypes thus clearly impacts prognosis. 

A recent study also proposed new classes of B-cell lymphoma based on a correlation gene set 
analysis and using a larger patient collective [42]. This study excluded mBL samples from the patient 
cohort and divided the remaining diffuse large B-cell cases into three classes. Their expression 
signatures and phenotypic characteristics show certain similarities with our non-mBL*, intermediate  
A and B subtypes; however, they also differ in other properties, for example in the assignment of  
cell-of-origin properties and of energy metabolism signatures. 

Figure 9. Kaplan-Meier survival curves of the original three subtypes (a) and the new four 
subtype (b) classifications. Tick marks indicate patients alive at the time of last follow-up. 
Subtype specific survival curves are compared using log-rank test and the respective  
p-values are indicated within the figures. 
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4. Conclusions 

Analysis of molecular biological data using Self-Organizing Maps (SOMs) enables a holistic view 
on high-dimensional data collected in large-scale studies. It provides a general framework for analytic 
tasks such as feature selection, integration of concepts of molecular function and systems tracking with 
individual resolution. The method extracts meta-features such as metagenes and spot-modules 
representing basal modes of systems behavior important for higher-level analysis.  

We applied SOM machine learning to patient expression data of mature aggressive B-cell lymphomas 
to characterize the specifics of the genome wide expression landscapes in different molecular subtypes 
of lymphoma. The expression portraits obtained by the SOM algorithm reflect the expression 
landscapes of the individual samples or subtypes in terms of intuitive and characteristic color textures. 
These spot patterns can be used to describe the underlying functional modules using gene set 
enrichment techniques. 

Several sample similarity analysis methods were applied to characterize the subtype structure in 
detail. The correlation network approach provides a powerful representation as it visualizes 
multivariate relationships in a clear and accessible fashion. We presented a straightforward strategy to 
identify outlier samples and modules, e.g., due to contaminations of tumor samples with healthy tissue, 
and to correct them. Furthermore, we found indications for a finer subtype classification of aggressive 
B-cell lymphoma into four subtypes. Samples were classified using a spot-guided and metagene-based 
k-Means clustering method. The robustness and consensus-cluster stability of the new four subtypes 
exceeds that of previous three class approaches. The functional and clinical impact of the new subtypes 
was discussed. The two intermediate subtypes of heterogeneous molecular signatures are associated 
with poor survival prognosis compared with the more homogeneous mBL* and non-mBL* subtypes. 

Our case study shows that analyzing gene expression landscapes with the tools presented here 
facilitates information mining in such huge data sets and eventually promotes our understanding of 
cancer biology. 
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Supplementary Materials 

1. Supporting Maps and Profiles  

A series of so-called supporting maps and profiles provide additional information about the 

metagenes beyond the expression portraits (see [1,2] for detailed descriptions). The population map 

visualizes the number of single genes mapped to each metagene. It shows that the single genes 

heterogeneously distribute among the map (Figure S1a). The metagene of maximal population  

(nk = 962, see the dark red tile in the center of the map) refers to genes with virtually invariant, mostly 

absent (i.e., below the detection limit) expression values in all samples studied. These invariant genes 

give rise to the dark blue spot area in the center of the variance map (Figure S1b). The population map 

also reveals so-called „empty‟ metagenes in the central and top left regions of the map. Note that 

downstream analyses such as gene lists and gene set enrichment analysis use the single gene 

information behind the metagenes. Empty metagenes thus do not contribute to these results. They 

effectively serve as a sort of separator between different expression modules characterized by different 

profiles. Note that all metagenes are characterized by their expression profiles which are adapted to 

optimally cover the input data space in the training process [3]. Empty metagenes do not interfere with 

the training process: There, the association of genes to metagenes changes continuously and adaption 

of a metagene profile also affects neighboring metagenes.  
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Figure S1. The population map illustrates the number of single genes mapped to each 

metagene: (a) The variance map illustrates the variance of the metagene expression profiles 

in each of the tiles (b); The variance of the expression state of each sample and of each 

subtype (c) and the distribution of spot numbers in each of the subtypes (d) are shown for 

the three subtype and four subtype classifications, respectively.  
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The variance profiles provide the variability of the metagene expression landscape of each sample. 

They are shown as single sample barplots and as culminated boxplots for each subtype of the three  

and the four subtype classifications (Figure S1c). They reveal, for example, a significantly higher 

variability of the mBL subtype samples compared with the intermediate and non-mBL ones (p < 0.0001 

in Wilcoxon rank-sum test), as well as a significantly lower variability of the intermediate A subtype  

(p < 0.0001). In other words, samples of the intermediate A subtype possess a more flat expression 

landscape than the intermediate B and non-mBL* subtypes, whereas the landscapes of the mBL* 

samples are the most „mountainous‟ ones. 

Finally, the distributions of the numbers of overexpression spots in the samples are given for the 

original and the new subtypes. They reveal that sample portraits of the subtypes mBL and non-mBL, 

as well as mBL* and non-mBL* show only one spot in most cases, whereas the different intermediate 

subtypes show a broader distribution of spot numbers (Figure S1d). Especially, the intermediate B and 

even to a larger extent the intermediate A subtypes are relatively heterogeneous with respect to the 

number of spots and, thus, number of different expression modules. 

2. Correlation Network Representation 

The correlation network (CN) translates the pairwise sample-sample correlation matrix into one 

graph. Its edges connect pairs of samples whose pairwise correlation coefficient exceeds a defined 

threshold. We chose rthreshold = 0.5 as default value (Figure S2b), which was successfully applied in 

previous cancer studies [4]. It was chosen as the most stringent threshold which still provides one 

connected graph. Higher correlation thresholds lead to isolated nodes (Figure S2c), whereas lower 

thresholds give rise to more dense graphs with partly unresolved structure (Figure S2a). 

Figure S2. The correlation network of lymphoma is generated using differing correlation 

thresholds: rthreshold = 0.4 (a), rthreshold = 0.5 (b) and rthreshold = 0.6 (c). We chose the threshold 

0.5 as default value to optimally resolve the network structure and to avoid isolated nodes. 

 

3. Sample Similarities Analysis of the New Subtypes 

The sample similarity analyses described in the manuscript are performed also for the four new 

subtypes proposed. The ICA plot reveals four consistent and well defined clusters (Figure S3a,b). The 

new mBL* and non-mBL* subtypes clearly split along the first independent component IC1 whereas 
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both intermediate subtypes separate along the IC2 coordinate. This result reveals that mBL* and  

non-mBL* subtypes on one hand and intermediate A & B on the other hand are governed by two 

mutually independently changing groups of genes. Especially, the non-mBL* samples extend also 

along the IC3 component reflecting the relatively heterogeneous character of the subtype.  

The NJ-tree shows that the new intermediate A and intermediate B subtypes accumulate in two 

disjunct branches as expected (Figure S3c). Interestingly, samples of the intermediate A subtype are 

also found in the mBL*- and in one of three non-mBL*-branches supporting its intermediate 

characteristics in between these subtypes.  

Finally, the PCM reveals the intermediate character of both intermediate subtypes showing positive 

and negative correlations with the mBL* and non-mBL* samples as well. On the other hand, the two 

intermediate subtypes (and also the mBL* and non-mBL*) tend to be pairwise anti-correlated indicating 

the partly antagonistic character of their gene expression patterns. Note that the four subtype 

classification provides clearly better structured correlation patterns compared with the three subtype 

classifications (Figure S3d, compare with Figure 5 in the main paper). 

Figure S3. Sample similarity analysis of lymphoma samples using four subtypes: ICA 

results for the first two (a) and first three (b) independent components, neighbor-joining tree 

(c) and pairwise correlation matrix (d).  
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4. Bootstrapping of the Three and Four Subtype Classifications 

We apply a bootstrapping approach to compare robustness of the three and four subtype 

classifications. The robustness is calculated as bootstrap stability score for each sample providing a 

value in the range of [0, 1]. For the original classification into three subtypes, the stability scores of the 

intermediate and especially of the non-mBL subtype samples are very diverse ranging from values 

near unity down to values below 0.5 (Figure S4, upper part). In this respect, the new classification into 

four subtypes is clearly more robust (p < 0.0001, Wilcoxon signed-rank test), reflecting the much more 

consistent and stable clustering of the samples. 

Figure S4. Bootstrap stability scores (upper part), correlation networks and subtype specific 

mean expression portraits (lower part) are shown for three (mBL, intermediate and non-mBL) 

and four subtype (mBL*, intermediate A, intermediate B & non-mBL*) classifications. 

 

The CNs are redrawn for the two different subtype classifications to localize uncertainly assigned 

samples which are represented as brightened up or blanked out circles for stability scores below 0.8 

and 0.5, respectively (Figure S4, lower part). The CN of the three class approach reveals cluster cores 

formed by the most stable samples, surrounded by a layer of uncertainly assigned samples. In the four 

class approach, the number of uncertain samples is clearly smaller. Again they accumulate along the 

borders between the subtypes. It is noteworthy that the core samples of the mBL and mBL* (and of the 

non-mBL and non-mBL*) clusters in both subtype approaches well agree. 
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5. Characterization of the New Subtypes 

5.1. Modular Gene Regulation Characterizes the Subtypes 

To achieve a more general view on the gene expression patterns in the lymphoma subtypes, we 

applied the weighted topological overlap network (wTO, [5]) approach to the spot modules identified 

in the lymphoma SOM as described in Hopp et al. [4]. The topological overlap ensures that strongly 

overlapping interactions (i.e., if two spots are strongly correlated with a third one) contribute with 

stronger weightings than weak ones (e.g., if at least one of the spots poorly correlates with the third 

one). The topological overlap consequently takes into account direct and also indirect relations 

between the spot modules. The resulting wTO network of B-cell lymphoma is depicted in Figure S5. 

Functional assignment of the spots is taken from gene set enrichment analysis. The detailed results of 

the spot analyses are given in Table S1. In addition, we show the expression profiles and population 

maps of selected gene sets in Figure S6. 

Figure S5. Network of the spot modules calculated using the wTO-metrics: The letters 

assign the spots as defined in the main paper. Red and blue lines refer to negative and 

positive correlations, respectively. Strongly correlated signature spots of the same subtype 

were aggregated into one module (e.g., „H‟, „K‟, „L‟ and „M‟ for mBL*). The leading 

functional context was taken from gene set enrichment analysis. 

 

The wTO network reflects the antagonistic relations between spots „H‟, „K‟, „M‟ and „L‟  

up-regulated in mBL* subtype and spot „O‟ up-regulated in the non-mBL* subtype (see Figure 2 in the 

main paper for spot assignments). The respective genes are associated with hallmarks of cancer. In the 

mBL/mBL* subtypes, proliferative and metabolic processes and GO-terms related to „cell division‟, to 

transcription and translation (e.g., „translation‟, „nucleus‟, „ribosome‟) and to energy metabolism (e.g., 

„mitochondrial respiratory chain‟, „mitochondrial outer membrane‟) become activated  (spots „H‟, „K‟, 

„L‟ and „M‟). Against this, samples of the non-mBL/non-mBL* subtypes up-regulate inflammatory 

processes and related GO terms such as „immune response‟ and „extracellular space‟ (spot „O‟) (see 

also Figure S6). 
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Table S1. Top-enriched gene sets in spots (see Figure 2 in main paper for assignments).  

Spot 
a
 Short name #G/#MG 

b
 Up 

c
 Down 

c
 GO and pathway sets 

d
 Tissue and disease sets 

e
 

H transcript-tion 308/14 mBL* non-mBL* 

chromatin silencing (BP, -4), synaptonemal 

complex (CC, -5); histone deacetylase binding 

(MF, 4); regulation of transcription,  

DNA-dependent (BG,-5) 

HUTTMANN_B_CLL_POOR_SURVIVAL_DN (LS, -7); 

MULLIGHAN_MLL_SIGNATURE_2_DN (LS, -7); 

ZHAN_LATE_DIFFERENTIATION_GENES_DN (LS, -8) 

K cell division 531/26 mBL* non-mBL* 

cell division (BP,-17); mitosis (BP, -16), 

chromosome (CC, -16); ATP binding (MF, -7); 

nucleus (CC, -17) 

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP (LS, -9); 

RHODES_UNDIFFERENTIATED_ CANCER (LS, -7); Overlap 

genes (LS, -7); KANG_DOXORUBICIN_RESISTANCE_UP  

(LS, -14); MMML 15 (LS, -5), developing astrocytes (CS, -11) 

L TF Binding 323/14 mBL* non-mBL* 

nucleus (CC, -7), transcription factor binding 

(MF, -5); heterochromatin (CC, -4); negative 

regulation of phosphorylation (BP, -4); histone 

H3 acetylation (BP, -4); negative regulation of 

NF-kappaB transcription factor activity (BP, -4) 

HUMMEL_BURKITTS_LYMPHOMA_UP (LS, -16); 

BILBAN_B_CLL_LPL_UP (LS, -6), 

SCHWAB_TARGETS_OF_BMYB_S427G_UP (LS, -6); 

SCHWAB_TARGETS_OF_BMYB_I624M_UP (LS, -6); 

BUCKANOVICH_T_LYMPHOCYTE_ 

HOMING_ON_TUMOR_DN (LS, -5) 

M chromatin 120/3 mBL* non-mBL* 

chromatin modification (BP, -5), nucleus  

(CC, -5); RNA helicase activity (MF, -5); 

ribosome binding (MF, -4) 

CHEOK_RESPONSE_TO_HD_MTX_DN (LS, -6), 

N nucleo-some 87/2 mBL* 
non-mBL* 

intermediate 

nucleosome assembly (BP, -7), nucleosome (CC, 

-8); flavin adenine dinucleotide binding (MF, -4); 

APOPTOSIS_INDUCED_DNA_FRAGMENTA

TION (RE, -6) 

SCIAN_INVERSED_TARGETS_OF_TP53_AND_TP73_UP (LS, -6); 

NICK_RESPONSE_TO_PROC_TREATMENT_UP (LS, -6) 

J 

toll-like receptor 

(innate 

immunity) 

362/15 intermediate A   

Toll-like receptor 1–4 signaling pathway (BP, -9); 

cytosol (CC, -10); protein binding (MF, -10); 

stress-activated MAPK cascade (BP, -5); Ras 

protein signal transduction (BP,-5); innate 

immune response (BP, -4);  

TOLL_RECEPTOR_CASCADES (RE, -4) 

TURJANSKI_MAPK8_AND_MAPK9_TARGETS (LS, -9); 

TURJANSKI_MAPK14_TARGETS (LS, -6); B-cells (TF, -4);  

B-cells (TS, -4); GILMORE_CORE_NFKB_PATHWAY (LS, -4);  
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Table S1. Cont. 

Spot 
a
 Short name #G/#MG 

b
 Up 

c
 Down 

c
 GO and pathway sets 

d
 Tissue and disease sets 

e
 

U 

humoral 

immune 

response 

321/20 
intermediate A 

non-mBL* 
mBL* 

bone resorption (BP, -5), SH3/SH2 adaptor 

activity (MF, -8); humoral immune response  

(BP, -5); B cell differentiation(BP, -4)  

ROSS_LEUKEMIA_WITH_MLL_FUSIONS (LS, -6), 

TSUDA_ALVEOLAR_SOFT_PART_SARCOMA (LS, -6),  

miRNA-503 (LS, -4);  

SHIPP_DLBCL_CURED_VS_FATAL_DN (LS, -6) 

E  71/4 intermediate B  

defense response to bacterium (BP, -4), basement 

membrane (CC, -5); ligand-dependent nuclear 

receptor activity (MF, -4) 

TRAYNOR_RETT_SYNDROM_UP (LS, -5); 

BUSA_SAM68_TARGETS_UP (LS, -4) 

P protein binding 74/6 
intermediate B 

non-mBL* 
mBL* 

regulation of protein binding (BP, -7); plasma 

membrane (CC, -7); elevation of cytosolic 

calcium ion concentration (BP, -7); membrane 

depolarization (BP, -6) 

CROONQUIST_NRAS_SIGNALING_UP (LS, -6); 

LIU_NASOPHARYNGEAL_CARCINOMA (LS, -5) 

Q 
respiratory gas 

exchange 
803/30 intermediate B  

Respiratory gas exchange (BP, -4); activation of 

JUN kinase activity (BP, -4); neural crest cell 

migration (BP, -4); RNA polymerase II core 

promoter proximal region sequence specific 

DNA binding transcription factor a (MF, -4) 

LIU_COMMON_CANCER_GENES (LS, -7); 

SPIRA_SMOKERS_LUNG_CANCER_DN (LS, -10); 

TIAN_TNF_SIGNALING_NOT_VIA_NFKB (LS, -5); 

GAL_LEUKEMIC_STEM_CELL_U (LS, -5); 

AGIV_CD24_TARGETS_UP/DN (LS, -5); PIK3_DN (LS, -5) 

O inflamma-tion 1088/76 non-mBL*  mBL* 

immune response (BP, -16), proteinaceous 

extracellular matrix (CC, -14); extracellular 

matrix structural constituent (MF, -13); 

THELPER_PATHWAY (BC, -8); signal 

transduction (BP, -11) 

HUMMEL_BURKITTS_LYMPHOMA_DN (LS, -12); 

KOBAYASHI_EGFR_SIGNALING_6HR_DN(LS, -7), 

FARMER_BREAST_CANCER_CLUSTER_5 (LS, -15); cultured 

astroglia vs. in vivo astrocytes (CS, -11); Sec. lymphoid organs (TS, -7) 

R DNA replication 117/5 
non-mBL* 

intermediate B 
 

positive regulation of DNA replication (BP, -7), 

stored secretory granule (CC, -4); 3',5'-cyclic-

AMP phosphodiesterase activity (MF, -5); 

FAS_PATHWAY (BC, -6); 

EFFECTS_OF_PIP2_HYDROLYSIS (RE, -6); 

regulation of protein binding (BP, -8);  

Bone marrow (TS, -5); 

CHIANG_LIVER_CANCER_SUBCLASS_UNANNOTATED_UP 

(LS, -6); CROONQUIST_NRAS_SIGNALING_UP (LS, -6); 

MATTIOLI_MULTIPLE_MYELOMA_WITH_14Q32_TRANSLOC

ATIONS (LS, -5); LIU_NASOPHARYNGEAL_CARCINOMA (LS, -5) 
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Table S1. Cont. 

Spot 
a
 Short name #G/#MG 

b
 Up 

c
 Down 

c
  GO and pathway sets 

d
 Tissue and disease sets 

e
 

W  43/5 non-mBL* 

mBL*, 

intermediate  

A & B 

endoplasmic reticulum (CC, -12); cell redox 

homeostasis (BP, -6); AHSP_PATHWAY  

(BC, -6);  

SCHLOSSER_MYC_TARGETS_AND_SERUM_ 

RESPONSE_DN (LS, -5);  

NIKOLSKY_BREAST_ CANCER_16P13_AMPLICON (LS, -5); 

IIZUKA_LIVER_CANCER_PROGRESSION_G1_G2_DN (LS, -5) 

G fibrino-lysis 131/1   

extracellular space (CC, -15); negative regulation 

of endopeptidase activity (BP, -14); 

FIBRINOLYSIS_PATHWAY (BC, -12); 

microsome (CC, -11) 

 

B  120/3   

external side of plasma membrane (CC, -5); 

positive regulation of hormone secretion (BP, -4); 

heterophilic cell-cell adhesion (BP, -4); 

melanocyte differentiation (BP, -4) 

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_WITH_LMP1

_UP (LS, -4); GNATENKO_PLATELET_SIGNATURE (LS, -4); 

C  97/3   
OPSINS (RE, -5); glutamate receptor activity 

(MF, -5); STEM_PATHWAY (BC, -4) 

GAL_LEUKEMIC_STEM_CELL_UP (LS, -4); 

YAGI_AML_RELAPSE_PROGNOSIS (LS, -4) 

S tonsil 53/3   

keratinocyte differentiation (BP, -10); desmosom 

(CC, -10); structural constituent of cytoskeleton 

(MF, -8) 

Tonsil (TS, -9); Epithelium (TS, -9); 

ROY_WOUND_BLOOD_VESSEL_DN (LS, -9);  

T tonsil 83/4   
homophilic cell adhesion (BP, -5);  

extracellular region (CC, -5) 
Tonsil (TS, -3); 

V  55/6 
intermediate  

A & B 
  

MATTIOLI_MULTIPLE_MYELOMA_SUBGROUPS (LS, -9), 

MATTIOLI_MULTIPLE_MYELOMA_WITH_14Q32_TRANSLOC

ATIONS (LS, -4) 

a
 Sets are assigned using the letter-nomenclature introduced in the main paper; 

b
 Number of genes/number of metagenes in the spot; 

c
 Cancer subtypes showing up- or downregulation of the respective spot;  

d
 Top enriched gene sets from the categories biological process (BP), molecular function (MF), cellular component (CC), reactome (RE), biocarta (BC), KEGG (KG). Enrichment is estimated using the p-value of 

the right-tailed Fishers exact test. The table lists the name of the gene set and the set category and the log10 p-value in the brackets; 
e
 Top enriched genesets from the categories „literature sets‟ (LS), cell systems 

(CS), tissue sets (TS). 
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Figure S6. GSZ-profiles and population maps are shown for selected gene sets 

accumulating in the subtype specific overexpression spots as indicated by the red ellipses.  
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Figure S6. Cont. 

 

Note that the expression levels of these hallmark-sets are on an intermediate level in most of the 

samples of the intermediate subtypes (e.g., see the sets „inflammatory response‟ and „cell division‟ in 

Figure S6). On the other hand, the signature sets of the mBL and non-mBL subtypes (see „mBL_up‟ 

and „mBL_down‟ in Figure S6) suggest a non-mBL*-like behavior of the intermediate subtypes which 

both change in concert with the non-mBL* samples. In contrast, other gene sets obtained from pathway 

activation experiments in the B-cell lymphoma context (see „LPS index‟ and „BCL6 index‟ in  

Figure S6) reveal a differential behavior of the intermediate subtypes. The latter gene sets show similar 
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profiles as the GO-gene sets „innate immunity‟, „toll signaling pathway‟ and „apoptosis‟ suggesting the 

selective activation of pathways related to innate immunity responses. 

In addition to the fact that each of the intermediate subtypes is characterized by two expression 

modules, these subtypes also show a more complex co-expression behavior compared with that of the 

mBL*/non-mBL* subtypes: Modules up-regulated in the intermediate subtypes positively as well as 

negatively correlate with the mBL* and the non-mBL* modules, respectively (see Figure S5). Hereby, 

the two modules of the intermediate A subtype behave differently: The „toll-like receptor‟ module „J‟ 

switches antagonistically with the two modules up-regulated in the intermediate B subtype, whereas 

the second module „U‟ switches in concert with the intermediate B, the non-mBL*, and, of course, the 

intermediate A modules, respectively. Thus, the activation of processes related to „humoral immunity‟ 

seems to be a common property of these three subtypes. In general, these network characteristics show 

an underlying complex behavior reflecting the heterogeneity of the intermediate subtypes on the level 

of gene expression.  

Enrichment analysis also shows that gene sets obtained in the context of different cancer studies 

enrich in the mBL* and non-mBL* modules which supports our result that these two subtypes in final 

consequence reflect hallmarks of cancer (see the last column in Table S1). In particular, the mBL* 

modules enrich cancer gene sets associated to poor survival prognosis due to deregulation of the MYC 

oncogene [6] (see Figure S6). Expression changes of selected MYC-targets agree with this result [7]: 

Activated MYC targets accumulate in the same region of the map as the poor prognosis genes together 

with GO sets related to transcriptional and translational activity. This result supports the view that 

MYC acts as a general amplifier of gene activity governed by chromatin remodeling [8]. Interestingly, 

the expression of gene sets related to chromatin structure (see „condensed chromosome‟ and 

„chromatin remodeling‟ in Figure S6) change in concert with the MYC-target, poor prognosis and 

mBL signature sets.  

Also, the spot modules up-regulated in samples of the intermediate subtypes enrich gene sets from 

other cancer studies. Interestingly, common cancer genes [9] are found in spot „Q‟ related to the 

intermediate B subtype. This set contains genes of the PIK3 signaling-pathway. An independently 

obtained set of genes deactivated by PIK3 are specifically up-regulated in samples of the intermediate 

B subtype („PIK3 down‟, Figure S6).  

These puzzling results require further studies. It becomes however clear that gene regulation in each 

of the subtypes and especially in the two intermediate classes splits into more than one mode which 

can co-regulate or anti-co-regulate each with another. Hence, the decomposition into four subtypes 

further diversifies into different modes per subtype on the level of gene regulation which, in turn, 

reflects driving effects on the genetic and epigenetic levels.  

5.2. Comparison with Healthy Cell-of-Origin Controls 

The „tonsil‟ module (spots „S‟ and „T‟) is positively and negatively correlated with the non-mBL* 

and mBL* modules, respectively, in our modular network (Figure S5). In other words, the non-mBL* 

subtype is more tonsil-like than the mBL* subtype. To prove this result we included microarray 

expression data of healthy control samples into our analysis with the final aim to assess the cell of 

origin characteristics of the new four subtypes defined. Expression data of 23 control samples  
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(10 tonsils, 13 germinal centers (GC) B-cells) were preprocessed as described in the main paper and 

combined with the 221 lymphoma samples to train a new SOM. The metadata obtained was then 

utilized to generate the correlation network (CN) shown in Figure S7. It clearly reveals close similarity 

of tonsils to non-mBL* and partly to intermediate B lymphomas. Also, GC B-cells are very similar to 

intermediate B showing however a closer similarity to mBL* lymphoma. These findings support the 

enrichment of lymphoma of the germinal center B-cell (GCB) type in the mBL*, non-mBL* and, to a 

lesser extent, intermediate B subtypes (see Table 1 in the main paper).  

Figure S7. Correlation network (CN) of the combined lymphoma and healthy control SOM. 

 

On the other hand, samples from the intermediate A subtype are dissimilar to the gene expression 

signatures of tonsils and GC B-cells supporting their preferential assignment to lymphoma of the 

activated B-cell (ABC) type as discussed in the main paper. In further support of this result we found 

that gene set signatures of „activated B-cells‟ and of „B-cell homeostasis‟ clearly enrich in the region 

of spots „U‟ and „J‟ up-regulated in the intermediate A subtype (Figure S6). Their expression profiles 

clearly up-regulate in samples of this subtype. 
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