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Abstract

Background: Long-term space travel simulation experiments enabled to discover different aspects of human
metabolism such as the complexity of NaCl salt balance. Detailed proteomics data were collected during the
Mars105 isolation experiment enabling a deeper insight into the molecular processes involved.

Results: We studied the abundance of about two thousand proteins extracted from urine samples of six
volunteers collected weekly during a 105-day isolation experiment under controlled dietary conditions including
progressive reduction of salt consumption. Machine learning using Self Organizing maps (SOM) in combination
with different analysis tools was applied to describe the time trajectories of protein abundance in urine. The
method enables a personalized and intuitive view on the physiological state of the volunteers. The abundance of
more than one half of the proteins measured clearly changes in the course of the experiment. The trajectory splits
roughly into three time ranges, an early (week 1-6), an intermediate (week 7-11) and a late one (week 12-15).
Regulatory modes associated with distinct biological processes were identified using previous knowledge by
applying enrichment and pathway flow analysis. Early protein activation modes can be related to immune
response and inflammatory processes, activation at intermediate times to developmental and proliferative
processes and late activations to stress and responses to chemicals.

Conclusions: The protein abundance profiles support previous results about alternative mechanisms of salt storage
in an osmotically inactive form. We hypothesize that reduced NaCl consumption of about 6 g/day presumably will
reduce or even prevent the activation of inflammatory processes observed in the early time range of isolation.
SOM machine learning in combination with analysis methods of class discovery and functional annotation enable
the straightforward analysis of complex proteomics data sets generated by means of mass spectrometry.

Introduction
The physiological impact of human space flights mis-
sions exceeding several weeks poses problems such as
radiation exposure, immunological depression and
stress. Part of the concerns occur during the course of a

mission, while others - such as cardiovascular decondi-
tioning, bone and muscle losses and orthostatic intoler-
ance - manifest themselves mainly upon return to earth
only. These in-flight and post-flight physiological issues
are vital to develop a sustainable program of human
space exploration. Long-term space travel simulation
experiments on earth are performed to discover the par-
ticular factors causing physiological and psychological
problems and to develop methods helping to prevent or,
at least to counteract them.

* Correspondence: binder@izbi.uni-leipzig.de; ennikolaev@rambler.ru
1Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig,
Germany
4Talrose Institute for Energy Problems of Chemical Physics, RAS, Moscow,
Russia
Full list of author information is available at the end of the article

Binder et al. BMC Genomics 2014, 15(Suppl 12):S2
http://www.biomedcentral.com/1471-2164/15/S12/S2

© 2014 Binder et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:binder@izbi.uni-leipzig.de
mailto:ennikolaev@rambler.ru
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


An interesting line of investigation was pursued as ‘Mars
isolation study’ conducted at the Institute of Biomedical
Problems in Moscow to simulate a journey to our neigh-
bor planet. The purpose was to find out more about the
effects of a long period of isolation on the human physio-
logical and mental conditions in terms of data gathered
over several weeks. Volunteers were confined to an
enclosed, restricted environment where they obtained
diets with defined amounts of salt (NaCl) and micro ele-
ments content and performed different activity programs.
These studies were remarkable for their sustained duration
and tight control of environmental variables. This ground-
based space station model experiment enabled a novel,
profound and extended trip to our ‘inner space’ to dis-
cover new aspects of human metabolism [1].
Particularly, the study provided a unique and detailed

profile of physiological responses to decreasing salt
intake. Besides playing a part in the development of
hypertension (an actual study estimates that more than
1.5 million annual deaths from cardiovascular causes
worldwide were attributed to increased sodium con-
sumption [2]) and the weakening of the immune system,
too much salt also seems to have a negative effect on the
musculo-skeletal system due to acidification caused by
the binding of salt to sugar-protein compounds. In con-
sequence a high salt intake increases bone and muscle
loss in humans on earth which is even exacerbated in the
absence of gravity. One expects that a salt-reduced diet
possibly diminishes negative effects such as bone degra-
dation in space flights.
Although the physiology of salt balance is well under-

stood (see the short review in [1] and the references cited
therein) the space flight simulation experiment high-
lighted a new complexity in physiological responses that
cannot be easily explained by previous knowledge [3-5].
For example, the studies raised doubts about the strict
link between salt and water balance which are presum-
ably caused by the storage of NaCl in a molecularly-
bound, osmotically-inactive form paralleled by immune
system driven micro-vascularization in skin which tends
to reduce blood pressure [6-8].
One needs further exploration of these findings to

improve our understanding of the effect of diet and of iso-
lation on human physiology especially to understand the
regulatory modes on the molecular level. So far measures
estimating the kinetics of salt balance and of hormone
production were analyzed and related to global parameters
such as the blood pressure, extracellular water and body
weight [3-5]. In addition to these measures, detailed urine
proteomics data were collected during the Mars105 isola-
tion experiment lasting 105 days potentially enabling a
deeper insight into the molecular processes involved. First
analyses report a high variability of protein abundance
identified in the urine samples [9]. Another analysis

established associations between clusters of proteins and a
functional protein networks related to sodium intake
which has been extracted from literature using bioinfor-
matics methods [10]. A third study analyzed the possible
tissue origin of the proteins detected. It founds an
increased number of renal and urinary tract proteins after
a real space mission compared with the ground-based
flight simulation presumably reflecting the accumulation
of sodium in cosmonauts body during space missions [11].
A comprehensive analysis of the time-dependent urine

proteomics data set collected during the ground based
flight simulation is still pending. In this publication we
analyze the abundance of the about two thousand proteins
measured during the experiment and discover its func-
tional impact. We pursue a personalized view to disentan-
gle the specifics of protein abundance in each of the six
participating individuals. We demonstrate that machine
learning using self organizing maps (SOM) in combination
with different analysis tools enable a personalized and
intuitive view on the data. Application and adaptation of
SOM machine learning to time-resolved protein abun-
dance data is novel and challenging due to the special data
type, unknown error structure and possible methodical
biases of the data.
In the first part of this publication we therefore address

methodical issues related to the proteomics data set. In
the second part we focus on the functional interpreta-
tional to answer question such as how urine protein
abundance is affected by decreased salt consumption and
isolation in the space flight simulation chamber and what
biological processes were involved at different stages of
the experiment.

Results
SOM abundance portraits and sample trajectories
Figure 1a shows the gallery of protein abundance land-
scapes as seen by the SOM-portraits. They visualize the
mean protein abundances averaged over the individual
volunteer data at each time point of sample collection.
Hence, each landscape ‘portrays’ the proteomics pheno-
type of the about 2,000 protein species identified by mass
spectrometry in the urine samples (IPI items). Proteins
with high topmost over and under-expression levels are
localized in the red and blue spot-like regions, respec-
tively. The spot patterns clearly change in the course of
the experiment reflecting alterations in the proteomics
phenotypes potentially caused by isolation, modifications
of salt (NaCl) consumption and presumably other factors.
Panel b of Figure 1 shows the so-called 2nd-level SOM

which visualizes the mutual similarities between the
samples in a two-dimensional plot. The samples pass
virtually four time windows where the first and second
ones were indicated by dotted ellipses: The first window
includes the samples taken before starting the isolation
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Figure 1 Time dependent SOM proteomics portraits of urine samples taken before, during and after the isolation experiment (panel
a) and time trajectory as obtained using 2nd level SOM mapping (panel b). The results refer to the ‘mean-volunteer analysis’ by averaging
the proteomics data over the six volunteers at each time point. Each column of images in panel a refers to one cluster as determined using 2nd

level SOM similarity analysis shown in panel b. Thin arrows indicate the temporal order of the specimen and thus the trajectory of the urine
proteomics samples. The amount a salt consumption per volunteer and day during the isolation experiment is indicated in the figures: the
arrows indicate the times of changing salt consumption. The dashed lines divide the trajectory into early, intermediate and late time ranges. The
‘early’ time-regime further subdivides into two clusters of samples collected before and after start of the isolation experiment (ellipses).
Alternative independent component analysis of the sample trajectory is given in the supplementary text (Additional file 1).
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experiment. The second time window lasts roughly until
the end of the sixth week of isolation in which salt con-
sumption is reduced from 12 g/day to 9 g/day. The
third period ends after week no. 11, i.e. two weeks after
salt consumption is further reduced to 6 g/day. The last
time window finally includes the samples taken in the
last three weeks of the isolation experiment and the
three sample points taken afterwards. Note that the
transition between time window two and three forms a
sort of turning point of the trajectory after that the pro-
teomic landscapes in the phase space of the 2nd level
SOM ‘move’ back in direction towards the starting
point. According to the amount of salt consumption the
samples taken before/after this turning point refer to
higher and lower salt consumption, respectively. In a
more rough view we divide the data into an ‘early’,
‘intermediate’ and a ‘late’ time regime as indicated in
Figure 1: It considers the similarity of the abundance
landscapes in the first two time windows and aggregates
them into one early phase.
In the supplementary text we analyzed similarity rela-

tions using independent component analysis (ICA) pro-
jecting the samples in linear scale. ICA virtually
confirms the results obtained using 2nd level SOM.

Spot trajectories and module selection
The SOM-algorithm distributes the proteins over the map
such that co-expressed proteins become located nearby. In
consequence, proteins specifically up-regulated in one of
the time regimes aggregate into red spot-like textures at a
certain position of the map. With evolving time of the
experiment the spot patterns change and, in particular,
existing spots disappear and new ones appear at new posi-
tions (see Figure 1a). Figure 2 (upper part) illustrates these
spot trajectories for red over- (left panel) and blue under-
(right panel) expression spots. The so-called summary
maps aggregate all red or blue spots observed in the indi-
vidual profiles into one master map, respectively. The
arrows illustrate the temporal order of appearance of the
respective spots: Due to the self-organizing properties of
the map red and blue spots ‘rotate’ in counterclockwise
direction along the edges of the map in a central-symme-
trical fashion. I.e., as a rule of thumb red and blue spots
often appear as antagonistic twins indicating that each
state is characterized by a set of up-, and a set of down-
regulated proteins as well.
This property of self-organization is reflected in the

spot-spot correlation and anti-correlation maps which
were calculated using a weighted-topology overlap net-
work approach as described in the Methods section and
in ref. [12]: The bottom left panel in Figure 2 shows
that spots up-regulated in the early time range are
mutually highly correlated forming a sort of continuum
of states located in right-upper part of the map. The

two time windows in the early range are consequently
associated with spots along the right and upper border of
the map, respectively. The intermediate and late time
ranges are accompanied by a marked shift of the spot posi-
tion towards the lower left corner of the map thus allow-
ing to associate the proteins within the respective spots
with the discontinuous changes in samples trajectory
described above (see also Figure 1). The anti-correlation
map (bottom right panel in Figure 2) supports the view
that spots up-regulated in the early and intermediate/late
time ranges are down regulated at intermediate/late and
early time ranges, respectively. Hence, the characteristic
breakpoints along the spot trajectories observed can be
associated with discontinuous changes of protein abun-
dance detected in the spot trajectories.
In the next step we address the question how to select

the spots appropriately or, in other words, how to seg-
ment the map properly into regions of co-regulated pro-
teins. Besides the over- and under-expression spot
selection algorithm we also applied alternative methods
based on correlation and K-means clustering. Details
and results of this analysis were provided in the supple-
mentary text.
We found that the spot selection method is not crucial

for extracting the basal dynamic properties of the system.
In dependence on partial needs, e.g. to extract strongly dif-
ferentially expressed proteins or larger groups of mutually
co-expressed or even largely invariant features we recom-
mend the overexpression, correlation or K-means cluster-
ing method, respectively. Here we will focus on the
overexpression spot selection method because it is a good
choice for marker selection which includes up- and down-
regulated features as well. Selected results for the correla-
tion and K-means clustering methods are presented in the
supplementary text (Additional file 1).

Spot profiles and functional analysis
Figure 3 assigns the spot profiles to selected overex-
pression spots. These profiles are mean time-dependent
protein abundance data averaged over all meta-features
included in the respective spot. The meta-features, in
turn, are mean protein abundance data averaged over
all single protein data contained in each meta-feature.
Hence, the spot profiles are mean profiles characteriz-
ing the average abundance of the single proteins
included in the respective spot. Most of the profiles
show a wave-like shape with a maximum and mini-
mum in different time windows reflecting the dynamic
up- and down-regulation of proteins during the experi-
ment. In direction of the spot trajectories discussed
above, the abundance maximum seen in the individual
spot profiles shifts to later times. The spot trajectory
thus reflects first of all the phase-shift � of the wave-
like profiles which roughly increases from � ~ 0-T*/2
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for early activation (e.g. spot D) to � ~ T*/2 - T* for
activation at intermediate and late times (e.g. spot R).
Here T* denotes the period of the changes, e.g. given
as total time of the experiment. The spot profiles differ
however not only in the position of their abundance
maximum but also in the time delay between maxi-
mum and minimum abundance and also in their shape
which can resemble more a harmonic cosine (e.g. spots
G and R) or more a single peaked function (e.g. spots
M and Q). The period can cover the whole duration of
the experiment, i.e. T*~105 days (e.g. spots D and J) or

a considerably longer or shorter time, T ~ 2 T* (e.g.
spots E and R) or T<T* (e.g. spots L and P), respec-
tively. Note that periodic changes of protein abundance
can be induced by different extrinsic factors such as
the activity, nutrition and working regime (e.g. night
shift work during the experiment) of the volunteers,
salt consumption but also intrinsic ones such as hor-
mone activities (e.g. of andosterone, see discussion)
and thus the period, or in other words, the degree of
recovery of protein abundance after its perturbation,
can deviate from the time span of the experiment.

Figure 2 Spot trajectories (part above) and mutual spot correlations: The over- and under-expression spot summary maps collect the
red and blue spots observed in the individual portraits into one master map, respectively. The arrows roughly illustrate the time-
trajectories of over- and under-expression spots before, during and after the isolation experiment (see also the individual SOM portraits shown in
Figure 1a). The correlation and ant-correlation maps visualize mutual correlations between the spots in terms of the weighted topological
overlap (wto) measures for positive and negative correlations, respectively. Spots are connected by lines for strong correlations/anti-correlations.
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Hence, the spots along the spot trajectory represent
clusters of proteins concertedly activated and deacti-
vated in sequential order during the experiment and dif-
fering also in the time of activation and the degree of
recovery of the initial state at the end of the experiment.
The overexpression spots contain from 6 to 27 proteins
(as given in Figure 3) whereas the correlation and K-
means spot clusters are markedly larger with 23-76 and
39-93 proteins per cluster, respectively (see respectively
(see supplementary text; Additional file 2 and 3).
Despite their differing size, the respective spot profiles
taken from comparable regions of the map look very
similar (compare Figure 3 with the respective figures
shown in the supplementary text for correlation and
K-means clustering).
The different time profiles of the spots allow us to

relate them to different properties of the sample trajec-
tory depicted in Figure 1. Particularly, spots showing dif-
ferent levels of protein abundance at the start and the
end of the experiment (i.e. with periods T ≠ T*) are
responsible for the shift between the start and end points
of the sample trajectories whereas spots with cosine-like
profiles and T~T* and also spots with peak-shaped

profiles are mainly responsible for the turning point of
the trajectories because the respective proteins mostly
recover their abundance state during the experiment (see
Figure 1).
Enrichment analysis using more than 2000 predefined

groups of proteins referring to different GO-terms from
the categories ‘biological process’, ‘cellular component’
and ‘molecular function’ allowed us to assign the func-
tional context to each of the spot clusters selected. In
Figure 3 the leading gene set is given for each overex-
pression spot cluster. The results of a more detailed ana-
lysis are given in the heat map shown in Figure 4 (see
refs. [13,14] for the description of the method) and in the
supplementary text where we map and profile selected
protein sets in detail. According to these analyses the
early time range is characterized by the activation of
inflammatory processes and angiogenesis (gene sets
inflammation, extracellular region, cell adhesion, comple-
ment activation, proteolysis, angiogenesis and Calcium
ion binding) whereas intermediate and late responses are
related to developmental and regenerative processes
(development, mitosis, regulation of transcription, chro-
matin remodeling) and stress and drug response (small

Figure 3 Protein abundance profiles are assigned to the overexpression spot modules together with the leading functional context as
obtained using gene set enrichment analysis. Spots are assigned by capital letters. So-called single spiked profiles accumulate in rare spots in
the lower-right part of the map. Lists of leading proteins are given for each spot in the supplementary text (Additional file 2). The vertical axis of
the profiles is scaled in units of differential abundance, ΔE, representing the mean binary detection level centralized with respect to the mean
abundance in all samples at all times.
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molecule regulative process, response to oxidative stress,
hypoxia, apoptosis, response to Zinc, Magnesium ion
binding, G-protein coupled activity), respectively. Note
that part of the processes related to inflammation, drug
response and also to genome and transcriptome activity
(chromatin remodeling, DNA repair) can be attributed to
the lack of recovery of the sample trajectories (these pro-
cesses are marked by the asterisks in Figure 4).
Clusters of proteins associated to the response of the

organism to ‘NaCl’ deficiency are identified previously
using a comprehensive interactome network analysis
[10]. We mapped proteins from these clusters into SOM
space and found that they mostly refer to the early, and
to a less degree, to the intermediate-time response (see
supplementary text).
Pathway signal flow analysis (PSF) represents an inde-

pendent option to discover the functional context of the
spot profiles. In contrast to gene set enrichment analysis
it takes into account the network topology of selected
pathways taken from the KEGG database to obtain PSF-
profiles which are compared with the abundance profiles
of the spots. It turned out that early and intermediate

protein abundance changes are associated with inflamma-
tory responses and metabolic processes (fatty acids,
nucleic acids and amino acids) indicating alterations of
nutrition and partly starvation followed by activation of
regenerative processes (Wnt-pathway, N-glycan biosynth-
esis) in the intermediate time range and of stress response
signaling (p53 and mTOR-signaling pathways) and diges-
tion at late times of the experiment (see Figure 5 and sup-
plementary text for details). Many pathways lead to the
activation of protein kinase C and inositol-triphosphate
signaling cascades in agreement with the enriched protein
sets related to signal transduction such as Ca2+ binding
and G-protein coupled receptor activity.

Individual volunteer analysis
So far we presented results based on the averaging of
the abundance of each protein at each time point over
all six volunteers. This ‘mean volunteer’ analysis allowed
extracting mean effects induced by isolation and varying
salt consumption but it neglects individual differences
between the volunteers. We therefore performed a sec-
ond independent SOM analysis of the individual data of

Figure 4 Global enrichment analysis heat map: The map clusters top GO-sets of the category ‘biological process’ enriched in
overexpression spots of the time series. The dashed rectangles indicate time regions of marked enrichment of the processes listed in the
right part of the figure (orange to brown colors refer to increasing enrichment). The vertical dotted line divides early from late time regimes.
Processes marked with an asterisk do not fully recover during the experiment. They are related to the shift between the start and end points of
the sample trajectories (see Figure 1)
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each volunteer. Figure 6 shows the gallery of time-
dependent ‘personalized’ portraits of all six probands
(P1 - P6). As for the ‘mean volunteer analysis’, the pro-
tein abundance landscapes can be divided into typical
color textures assigned to the early-, intermediate- and
late-response types, respectively. Simple visual inspec-
tion of the portraits shows that the abundance patterns
of most of the volunteers alter in parallel (see the
colored frames in Figure 6). Partly, one observes

however small variations in the time-dependent changes:
For example, the portraits of P4-P5 switch into the time
regime of the ‘late’ type almost one-two weeks earlier
than that of P1-P3. Late-type protein abundance pat-
terns were observed for P5 in three samples taken
before starting isolation.
Figure 7 shows the individual sample trajectories of

each of the volunteers using 2nd level SOM analysis. One
sees that virtually each trajectory can be clearly divided

Figure 5 Summary of results obtained from pathway flow analysis: The light blue arrows indicate characteristic processes activated
with progressing time of the experiment. The processes are identified by comparing the PSF of KEGG-pathways with the spot profiles of
protein abundance (see supplementary text for details).

Figure 6 Gallery of SOM portraits of the individual volunteers: Each row refers to one proband (P1 to P6) and each column to one
time point of sample collection. Empty positions in the matrix refer to missing data because no samples were collected. The blue, green and
red frames include samples showing the characteristics of early, intermediate and late responses, respectively. Note that the SOM textures
cannot be directly compared to the textures of the mean volunteer analysis (shown in Figure 1) because both sets of maps are trained
independently. Note that three out of five urine samples taken from proband no. 5 (P5) and possibly one taken from P6 before starting isolation
express proteomics characteristics observed apart from that in the samples of all volunteers in the late time range only (see the red frames
for P5).
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into the early, intermediate and late time ranges. The
borderlines separating the different time regimes how-
ever slightly shift between the individuals. One also sees
that volunteer P5 is characterized by a certainly more
intricate trajectory reflecting his individual specifics.
Next, we performed functional analysis by applying gene

set enrichment clustering to the single volunteer data (see
supplementary text for details). In general, the functional
context of the different time ranges agrees with that of the
mean volunteer analysis. However, the larger set of indivi-
dual sample data provides a more detailed view on the
specifics of each volunteer. For example, features related
to ‘immune response’ were either up-regulated in the early
phase of the experiment only (P1, P4, P6) or, in addition,
again in the late phase (P2, P3, P5).

Organ related protein abundance
Proteins not of renal origin fall in urine from blood and
in blood from the respective tissues and cells. We used

Tissue specific Gene Expression and Regulation data
base (TiGER, [15]) to assign protein species to different
tissues and assess their abundance in the urine samples
studied (see Figure 8 and supplementary text). First we
map the tissue-related protein sets to SOM space: It
turned out that the respective species of a series of tis-
sue sets accumulate in different regions of the map
which were assigned to different time ranges. For exam-
ple, pancreas and liver proteins show an increased local
density in the area of early_up proteins, muscle proteins
in the region of intermediate_up region and testis pro-
teins in the late_up region. The respective time profiles
confirm the expected activation patterns. We found that
proteins from liver, pancreas and kidney show increased
abundance before and at the beginning of the isolation
experiment. Proteins from muscle are overexpressed at
intermediate times of isolation and proteins related to
testis and stomach at the end and after isolation. Protein
sets related to skin, lymph nodes, blood, prostate, brain

Figure 7 Individual sample trajectories of each of the six probands (P1 - P6) in 2nd level SOM coordinates. Each of the trajectories can
be divided into early, intermediate and late time regimes despite small individual differences (dashed lines). The 2nd level SOM was trained with
the data of all volunteers. The trajectories shown connect the time-dependent samples of the respective proband. The symbols ‘+’ and ‘x’
indicate the start and the end of isolation. Note that the trajectory of proband no. 5 (P5) enters the ‘late time range’ still before starting isolation
in correspondence with the respective proteomics portraits shown in Figure 6.
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and colon show virtually no or only a very weak time
dependence in the single volunteer analysis.
The single volunteer tissue profiles again reveal indivi-

dual differences between the probands: For example,
liver proteins of P1 and P5 respond much weaker than
liver proteins of the other volunteers. The individual
profiles of prostate proteins clearly show time depen-
dencies which however are averaged out in the average
volunteer profile due to their asynchronous character
(see supplementary text provided in Additional file 1).

Total protein abundance analysis
In addition to single-, meta-feature and spot related abun-
dance levels using centralized values (i.e. normalized ones
with respect to the mean value averaged over all volun-
teers and time points) we analyzed the time profile of the

total protein (i.e. integral) abundance level in terms of the
variance of the respective meta-feature abundance land-
scapes (Figure 9). The abundance landscapes refer to a
separate SOM training described below and in the supple-
mentary text. It turned out that, on average, the total
abundance level slightly increases before isolation in the
early time range but then, after a plateau, it steeply
decreases in the intermediate and late time ranges until
the end of isolation of the volunteers. Hence, isolation
causes the overall decrease of protein abundance in the
urine samples. In other words, processes down-regulated
in the intermediate and late time regimes obviously
involve a larger number of proteins and/or their stronger
abundance changes than processes up-regulated in the late
time regime. Analysis of the population map supports this
expectation (see supplementary text): About 27% of the

Figure 8 Tissue specific protein abundance: Tissue specific protein sets are taken from TiGR [15]and mapped into the single volunteer
map (left part). The red rectangles illustrate regions of increased local density of the respective proteins. These regions refer to the early_up,
and late_up time ranges. The set-profiles shown in the middle part clearly reveal the different time profiles in the average volunteer analysis. The
respective single volunteer analysis reflects proband-specific differences between their tissue abundances. The respective data of additional
tissues (kidney, muscle, stomach, skin, lymph node, blood, prostate, brain, colon) is given in the supplementary text.
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proteins and 33% of the meta-features are up-regulated in
the early time range whereas only 20%/13% of the pro-
teins/meta-features up-regulate in the late regime. The
remaining 53%/54% refer to rare and single spiked fea-
tures. Inspection of the individual volunteer data again
reveals slight differences between the total abundance
levels of the probands and between details of their respec-
tive time courses (Figure 9). For example, P5 shows a
decreased total level of protein abundance.
The detailed inspection of all total profiles indicates a

certain fine structure in terms of three to four local peaks
which appear immediately before or at starting isolation,
after reducing salt consumption from 12 to 9 g/day and
further to 6 g/day and at the end of the experiment (see

the asterisks in Figure 9). Interestingly, adjacent local
peaks of total protein abundance are separated by about
five weeks possibly reflecting an intrinsic infradian
rhythm in protein abundance. The total abundance level
slightly increases after finishing isolation indicating slow
regeneration of the volunteers. Part of this fine structure
is found also in the abundance profiles of selected spot
modules, e.g. of the overexpression spots G, E, M, P, J
and Q (see Figure 3) expressing one or two sharp peaks
in the time regions identified in the total abundance
analysis.
To get deeper insight into this phenomenon we per-

formed a full and detailed SOM analysis of the absolute
abundance profiles using a similar approach as developed

Figure 9 Total level of protein abundance averaged over all probands (part above) and separately for each proband (part below) as a
function of time: We calculated the variance of the meta-feature abundance landscapes obtained after SOM training using not-
centralized protein abundance profiles. The oordinate values thus estimate the mean squared amplitude of overall abundance as a function
of time. The asterisks indicate the sequence of four peaks observed virtually in all data sets.
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for differential abundance data. Recall that analysis using
centralized profiles applied so far focuses on abundance
changes independent of the abundance level. For exam-
ple, virtually invariant profiles of high and of low abun-
dance levels were clustered together in this case.
Absolute abundance values certainly distinguish between
these two situations. Thus the analysis of absolute abun-
dance profiles is expected to provide additional informa-
tion about the abundance levels of the proteins in the
course of the experiment. Detailed results were described
in the supplementary text (Additional file 1). We found
that a series of processes become activated in relatively
narrow time windows of peaked abundance at the four
fixed times identified in total abundance analysis, namely
at or immediately before isolation (angiogenesis, comple-
ment activation and others), at or immediately after redu-
cing salt consumption to 9 g/day (focal adhesion and
cytoskeleton) and to 6 g/day (cell differentiation and
organ development) and near the end of the experiment
after isolation. The latter trend suggests recovery of the
initial state before starting isolation. Double peaked pro-
files combine peaks at late and intermediate times (e.g.
metabolic process and apoptosis). Importantly, immune
response processes are permanently active during the
experiment with a slight decay in the late time range.
About 60% of the proteins are permanently expressed on
low abundance levels during the experiment whereas
about 7% - 10% are permanently expressed on high abun-
dance levels. This result agrees with our estimation using
centralized data.

Discussion
SOM portrays urine proteome abundance landscapes
with high temporal and individual resolution
From a methodical point of view we aimed at analyz-
ing a complex high-content data set of about 2000
protein species measured at 24 different time points
for six individuals in terms of clustering and class dis-
covery, feature selection an functional information
mining using SOM machine learning. The data set is
unique and exceedingly valuable with respect to its
scope, duration, and level of environmental control. It
has been shown that the analysis pipeline chosen is
well suited to extract longitudinal (i.e. time dependent)
as well as transversal (i.e. volunteer specific) informa-
tion in detail. One special strength of the approach
can be seen in its visualization capabilities allowing the
intuitive perception of essential properties of the data
such as the detection of spot-like clusters of differen-
tially and co-expressed proteins, and especially, of their
time-dependent changes and/or their volunteer-specific
variations. The basal results of our SOM analysis are
summarized in Figure 10 and Table 1.

We found that
- The dynamics of urine proteomics can be described

in terms of sample trajectories reflecting similarity rela-
tions between the protein abundance landscapes of the
samples as a function of time; or alternatively, in terms
of spot trajectories reflecting similarity relations between
the time profiles of different groups of co-expressed
proteins. Both types of trajectories describe the
dynamics of urine proteomics in a complementary
fashion.
- The time course of urine proteomics splits roughly

into three time ranges, an early, an intermediate and a
late one using data averaged over all six volunteers stu-
died. Each of the time ranges is characterized by rela-
tively similar protein abundance landscapes and thus by
similar biological processes activated (and deactivated).
- The abundance of about one half (47%) of the 2000

protein species clearly changes in the course of the
experiment. The total protein abundance level is maxi-
mum in the early time region and then it progressively
decreases until the end of the experiment.
- The remaining other half of all proteins (53%) is

either expressed invariantly virtually not or weakly
responding to the experiment or it shows so-called rare,
noisy and single-spiked profiles. The respective protein
species are expressed only at very few time points for a
small part of the volunteers only. The further analysis
and interpretation of these profiles is beyond the scope
of this study.
- The volunteer averaged sample trajectory passes

through a turning point at the end of the early time
range and then it moves backwards in direction of the
starting point revealing the partial recovery of the protein
abundance state observed before starting isolation on one
hand, but also certain differences between the start and
end points of the experiment on the other hand.
- The three characteristic time ranges are consistently

observed in the individual time course proteomics of all
six volunteers. Small but clear individual differences are
observed (e.g. relatively low abundance levels of proband
no. 5 and slight variations of the start and end points of
the time ranges between the individuals). Here we focus
on the ubiquitous effects. We note however, that our
method enables the personalized view on these indivi-
dual differences.
- The similar time courses of urine proteomics of all

volunteers let us conclude that the three time ranges
reflect representative and essential physiological regimes
associated with isolation, salt consumption and presum-
ably also other factors. Note that the intermediate and
late time ranges start one week after reducing the daily
salt consumption from 12 to 9 g and further to 6 g,
respectively.
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Figure 10 Summary graphics of the time course of urine proteomics during the Mars 105 space-flight simulation experiment.

Table 1 Overview over effects observed in space-flight isolation experiments after analysis of urine proteomics

Time range early intermediate late

week of isolation before isolation and
week 1-6

week 7 - 11 week 12 - 15 and after isolation

NaCl consumption 12 g/day (week 1-6) 9 (week 7-9), 12 (week 10) and 6 g/day
(week 11)

6 g/day (week 12-15)

Activated biological
processes (enrichment
analysis)

inflammation, cell adhesion,
blood coagulation, proteolysis,
angiogenesis, Ca2+ binding,

extracellular region

cell division, lipid metabolism, skin
development, keratinization, chromatin
remodeling, response to oxidative stress
and hypoxia, regulation of apoptosis

response to drug/toxin, small molecule
metabolic process, intracellular, Mg2+

binding, response to Zinc, Cell death,
G-protein coupled receptor, regulation
of blood pressure (renin/angiotensin)

Activated pathways (PSF
analysis)

immune response; nervous
system; nucleotide, amino
acid and lipid (butanoate)

metabolism

digestive system; metabolism;
regenerative processes (Wnt-signaling
pathway and N-glycan biosynthesis)

signal transduction; response to stress
(p53-, mTOR-signaling pathway), energy
metabolism (ubiquinone biosynthesis)

Activated tissue responses Liver, kidney, pancreas, (partly
skin)

muscle testis, stomach, (partly liver and kidney)

Relation to previous results NaCl related interactome activated [10], NaCl storage in an osmotically
inactive form and micro-vascularization [6,7], renal proteins activated [11]

blood pressure decrease and
aldosterone level increase [4]

Total protein abundance increasing and high decreasing low

Percentage of proteins up-
regulated

27% 20%
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- The so-called ‘spots’ collect co-expressed proteins
representing regulatory modes associated with distinct
biological processes which can be identified using pre-
vious knowledge by applying enrichment or pathway flow
analysis. In total we identified about ten different modes
of protein abundance. Application of different methods
of spot selection (e.g. using overexpression, correlation or
K-means clustering techniques) essentially provides a
consistent picture however with different numbers of
proteins associated with the different modules. Signifi-
cance of co-expression of the proteins of each module
was estimated using a beta test adapted to the spot clus-
ters identified in the SOM analysis.
- The larger number of spot modules exceeding the

number of time ranges specified reflects the fact that
this rough classification into three ranges further splits
into different dynamic modes characterized by their
phase shift, period and particular shape.
- The separate SOM analysis of absolute abundance

values provides additional and complementary results: It
allows to identify permanently present and weakly
expressed proteins, respectively and it allows to extract
single and double peaked abundance profiles presumably
indicating immediate responses of urine proteomics to
changes of salt consumption and/or infradian rhythms
due to other factors.

Urine proteome abundance reflects variations of sodium
balance and of related molecular processes
The similar time courses of urine proteomics of all
volunteers let us conclude that the three time ranges
reflect representative and essential physiological regimes
associated with the duration of isolation and salt con-
sumption, the only dietary factor that systematically and
markedly changed in the course of the experiment. The
intermediate and late time ranges start not later than one
week after reducing the daily salt consumption from 12
to 9 g and further to 6 g, respectively (recall that samples
were collected only once a week which limits the time
resolution of the experiment). Note that a salt consump-
tion of 12 g/day to 6 g/day is considered as the normal
range of human daily salt intake. Hence the observed

effects are not related to excessive or deficient salt intake
compared with this normal range but rather reflect subtle
responses to slight but systematic alterations of salt con-
sumption within the normal physiological limits.
For functional interpretation we applied enrichment

and pathway signal flow analysis. In general, early pro-
tein activation can be related to pro-inflammatory pro-
cesses as indicated by the GO sets immune response
and inflammatory processes, activation at intermediate
times to developmental and proliferative processes and
late activations to stress and responses to chemicals. It
has been reported previously that macrophages, a type
of cells in the immune system, besides defending the
body against infections appear also to be involved in the
regulation of the salt balance and blood pressure [4,6,7].
In body regions with high salt concentrations, they
cause the formation of new blood and lymph vessels
especially in skin, thus helping to regulate the body’s
microcirculation with consequences for the blood pres-
sure. In support of this mechanism we find that pro-
cesses like angiogenesis, cell adhesion, proteolysis and
proteins in cellular components like extracellular region
became activated in parallel to pro-inflammatory pro-
cesses. Moreover, also a set of proteins involved into an
interaction network related to organisms response to
salt (NaCl) taken from [10] were activated in the early
time region immediately following the adjustment of the
daily NaCl-dosis to 12 g. Interestingly, the activity of the
protein set ‘regulation of blood pressure’ increases
slightly in the late phase of the experiment only (see
supplementary results). This set collects a group of pro-
teins involved in regulation of blood pressure via the
‘conventional’ renin/angiotensin mechanisms: Their
expression stimulates the release of aldosterone which
in turn reduces blood pressure. Indeed, the blood con-
centration of aldosterone is found to continuously
increase during the isolation experiment paralleled by
the continuous decrease of systolic blood pressure [4].
Part of protein abundance in the early time range can be

related to kidney involved in excretion and water balance
in agreement with [11]. According to the generally
accepted view, sodium accumulation in the human body

Table 1 Overview over effects observed in space-flight isolation experiments after analysis of urine proteomics
(Continued)

Percentage of invariant,
noisy and single spiked
proteins

>50%

Up-regulated modules G, E, D, M, N, L J, P, Q R

Down-regulated modules R, Q, J, P D, E, G, Q, R G, E, D, M, N, L, P

Module-related proteins
(differential abundance)

see Additional file 2

Module-related proteins
(absolute abundance)

see Additional file 3
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takes place in the extracellular space and is accompanied
by an increase in the rate of fluid retention and body
weight gain. In space-flight isolation experiments the rela-
tive rate of body weight gain was however lower than the
relative rate of gain in the total body sodium, which sug-
gested that sodium accumulated in an osmotically inactive
form presumably in bone, skin (connective tissue) or carti-
lage (see [7] and references cited therein). Proteins usually
expressed in skin were only weakly activated in the early
time range. Note however that related processes such as
keratinization were clearly up-regulated. Other organ spe-
cific abundance patterns characteristic for liver and pan-
creas become also activated in the early time regime.
These alterations in protein abundance presumably reflect
the effect of isolation, nutrition and salt consumption on
digestion and homeostasis. Activation of muscle-specific
proteins in the intermediate and of testis-specific proteins
in the late time regime are presumably consequences of
the physical activity and/or of hormone production of the
volunteers during the experiment.
Activation of regenerative processes in the intermedi-

ate time range at least partly might be related to reorga-
nization of tissues involved in salt balance and storage.
With progressive time of isolation protein abundance
strongly decreases. Stress related signatures became
increasingly into play accompanied by signatures related
to drug metabolism.
Analysis of absolute abundance values shows that part

of proteins related to immune response and extracellular
space are permanently expressed with a slight decay in
the late time range. In contrast, proteins involved in
stress response and signal transduction gain in activity in
the late phase of isolation. Interestingly, the abundance
of proteins related to organ morphogenesis, angiogenesis
and cell differentiation seem to respond immediately to
changes of salt consumption by abundance peaks of 1-3
weeks duration. The question whether these effects are
affected by infradian rhythms due to other effects such as
the night-shift of the working regime and/or periodic
changes of hormone production and salt balance [3,4]
requires further studies.

Summary and conclusions
Ground-based space station model experiments enabled a
novel, profound and extended trip to our ‘inner space’ to
discover different aspects of human metabolism. Analysis
of urine proteomics data using SOM machine learning in
combination with biological function mining provided
detailed insights into the physiological status of healthy
cosmonaut-volunteers on protein level. Protein abundance
characteristics support previous results about alternative
mechanisms of salt storage paralleled by the activation of
immune response in the context of their influence on
micro-vascularization. Based on our results we hypothesize

that reduced NaCl consumption of about 6 g/day presum-
ably will reduce or even prevent the activation of inflam-
matory processes observed in the early time range of
isolation. Moreover, the physiological status of the volun-
teers systematically and consistently changed during the
105 day experiment. Extended studies such as the 500 day
isolation study (Mars 500) are required to discover long
term effects. Our data also show that the turning point of
the time trajectories suggest a first phase of adaptation to
the conditions of isolation about two months after starting
the experiment. Recovery to the ‘normal’ physiological sta-
tus before the experiment is not observed during and
directly after isolation.

Methods and data
Experimental setup
Six healthy men aged from 26 to 41 year participated in
the ground based isolation experiment. They spent 105
days in an airtight chamber with autonomous systems of
life support which is installed in the Institute of Biome-
dical Problems of the Russian Academy of Sciences. The
isolation study was approved by several ethical boards of
the Russian Federation and European Space Association
authorities. Written informed consent was obtained and
all studies were done as outlined in the Declaration of
Helsinki.
The regime of salt consumption was reduced from

12 g/day and volunteer in week 1 - 5, to 9 g/day (week
6 - 9) and finally to 6 g/day (week 11 - 15) (see Results
section for details). In week 10 volunteers consumed
12 g/day. Urine was sampled (15 ml) once a week in
the morning after breakfast (middle jet collection) as
described previously [10,16]. In addition, four to six
samples were collected from each subject before the
isolation experiment and one to three after the experi-
ment. Urine proteomics data were obtained by High
Performance Liquid Chromatography and Tandem
Mass Spectrometry (HPLC-MS/MS).

Sample Preparation for Mass Spectrometry
Urine samples (15 mL) were concentrated using Amicon
UltraUltracel-15 5 k tube (Millipore, USA) at 1,000 g for
1 h at 4°C. The resultant concentrate (300 ml) was then
evaporated to dryness in a centrifuge evaporator. Sam-
ples were normalized up to total protein concentration
of 10 mg/mL using reduction buffer containing 0.2 M
Tris-HCl, pH 8.5, 2.5 mM EDTA, 8 M urea. Urinary
protein level was measured by standard method with
Bradford Protein Kit (Bio-Rad) according to manufac-
turer recommendations. To reduce cysteine residues the
solution of urinary proteins was mixed with dithiothrei-
tol (0.1 M final concentration) and incubated at 37°C.
For alkylation of reduced SH-groups, the reaction mix-
ture was cooled and mixed with small amount of
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concentrated aqueous solution of iodoacetamide up to
its final concentration of 0.05 M. After incubation of the
reaction mixture at room temperature for 15 min in
darkness, the reaction was stopped by adding molar
excess of 2-mercaptoethanol (10 ml per mg of added
dithiothreitol). Proteins were precipitated by addition of
10 volumes of acetone containing 0.1% (v/v) trifluoro
acetic acid and overnight incubation at -20°C. After cen-
trifugation at 12,000 g for 10 min at 4°C the sediment
was re-suspended in 96% ethanol (v/v), centrifuged
again at 12,000 rpm for 10 min at 4°C, and dried in the
centrifuge evaporator for 1 h at 45°C. Trypsinolysis of
the urinary protein fraction was performed in 200 mM
NH4HCO3 buffer (protein concentration about 1 mg/
mL) with modified porcine trypsin (Promega, USA)
added at the ratio enzyme/protein of 1:100 (w/w). After
6 h incubation at 37°C hydrolysis was stopped with for-
mic acid (final concentration of 3.5%). The solution was
centrifuged at 12,000 g for 10 min at 4°C, and the
supernatant was analyzed by HPLC-MS/MS [16].

High Performance Liquid Chromatography and Tandem
Mass Spectrometry (HPLC-MS/MS)
HPLC-MS/MS experiments were performed in triplicate on
a nano-HPLC Agilent 1100 system (Agilent Tech-nologies,
Santa Clara, CA, USA) in combination with a 7-Tesla LTQ-
FT Ultra mass spectrometer (Thermo Electron, Bremen,
Germany) equipped with a nanospray ion source (in-house
system) as described in [10,11,16]. A sample volume of 1 μl
was loaded by autosampler onto a homemade capillary col-
umn (75 μl id, length 12 cm, Reprosil-Pur Basic C18, 3 μm,
100 A; Dr. Maisch HPLC GmbH, Ammerbuch-Entringen,
Germany) which was prepared as described in [17]. Separa-
tion was performed at a flow rate of 0.3 ml/min using 0.1%
formic acid (v/v, solvent A) and acetonitrile 0.1% formic
acid (v/v, solvent B). The column was pre-equilibrated with
3% (v/v) solvent B. Linear gradient from 3% to 50% (v/v) of
solvent B in 90 min followed by isocratic elution (95% v/v,
of solvent B) for 15 min was used for peptide separation.
MS/MS data were acquired in data-dependent mode using
Xcalibur (Thermo Finnigan, San Jose, CA, USA) soft-
ware. The precursor ion scan MS spectra (m/z 300-
1600) were acquired in FT mode with a resolution of
50000 at m/z 400. The three most intense ions were iso-
lated and fragmented by collision-induced dissociation
(CID), MS/MS spectra were measured in the linear ion
trap (LTQ). In data-dependent experiments, dynamic
exclusion was used with 20 s exclusion duration. In
data-dependent experiments, dynamic exclusion was
used with 20 s exclusion duration.

Urine proteomics data preprocessing
Raw MS/MS data from the LTQ-FT were processed to
msm-files using the software RAW2MSM (version

1.10_2007.06.14) [17]. Mascot database searching was
performed using Mascot Server 2.2 software (Matrix
Science, London, UK; version 2.2.06); all tandem mass
spectra were searched against the human IPI protein
sequence database from the European Bioinformatics
Institute (version 3.82; released 06.04.2011; 92104
entries) assuming the digestion enzyme trypsin. Search
criteria included two missed cleavage, carbamidomethyl
of cysteine as a fixed modification, oxidation of methio-
nine as a variable modification, fragment ion mass toler-
ance of 0.50 Da (10 ppm). Protein identifications were
accepted if they contained at least 2 identified peptides
with ion scores >24. The results were verified against
reverse database to a false discovery rate of less than 1%
using Scaffold 4.0 software (version Scaffold-01_07_00,
Proteome Software Inc., Portland, OR). All Mascot search
results and parameters are submitted to the PeptideAtlas
(submission PASS00592) repository and are freely avail-
able for download with the URL: http://www.peptideatlas.
org/PASS/PASS00592. The data file with peptides and
proteins are also provided as Additional file 4.
This preprocessing provides 2,038 species indexed by

the international protein indices (IPI) in the Mascot
data base. All protein species indexed by IPI were
included into our analysis. 1660 (71%) of them were
explicitly assigned to genes using the biomaRt program
package available in the bioconductor repository with
query to Ensemble gene annotations http://www.biocon-
ductor.org/packages/release/bioc/html/biomaRt.html.
The presence/absence of each protein species in each
sample was defined by binary 1/0 values providing an
abundance matrix for each volunteer where each row
corresponds to one protein and each column to one
time point of sample selection (Additional file 5). For
downstream analysis we used either these individual,
volunteer-specific data (single volunteer analysis) or we
calculated the mean abundance for each protein and
time point by averaging protein data over the individual
volunteers (mean volunteer analysis). Single volunteer
abundance data are provided as Additional file 5.
The time course of abundance of each protein is called

abundance or expression time profile whereas the abun-
dance of all proteins considered at one time point is called
abundance or expression state. We will use the terms
‘abundance’ and ‘expression’ (of proteins in urine) as syno-
nyms throughout the paper. Effectively a protein species is
present if its MS-signal exceeds the mean detection
threshold in a constant volume of urine (15 ml). Note that
the amount of proteins detected refers to a constant
volume collected and thus ‘protein abundance’ estimates
protein concentration in urine. Decreased amounts of pro-
teins detected thus can be explained by decreased protein
penetration into urine at stable water reabsorption/dilu-
tion and/or by decreased water reabsorption by kidney at
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a constant amount of penetrated proteins. This latter ‘dilu-
tion’ effect seems however to play a minor role (i) because
total water balance and/or urine excretion varies to a
much less extent compared with the decrease in total pro-
tein abundance detected [4]; and (ii) because the protein
composition alters very strongly reflecting marked changes
of the underlying physiology. Upon simple dilution one
would expect only weak alterations of the protein
composition.
For further analysis we used centralized abundance pro-

files as standard by subtracting the mean abundance value
of each profile from the raw profile data. Positive and
negative values consequently define the range of over- and
under-presence of each protein species relatively to its
mean value, respectively. Such centralized data accent
alterations of protein expression independent of its abso-
lute expression level. The SOM algorithm (see below)
clusters profiles of proteins showing similar changes
together. Hence, also invariantly high and invariantly low
expressed proteins are clustered together. To analyze the
absolute abundance level of the data we also used data
without centralization. Detailed results of this analysis are
presented in the supplementary text.

SOM machine learning
We used an analysis pipeline based on the R-program
opoSOM developed previously for high-throughput gene
expression analysis [13,14]. It transforms the abundance
values of all proteins measured into an abundance land-
scape per state. It serves as fingerprint portrait of the
respective proteomic phenotype. The program also per-
forms a series of useful downstream analysis tasks such
as sample similarity-, differential feature selection- and
gene set enrichment-analyses.
After appropriate initialization (see [14]) the SOM-

algorithm distributes the proteins over a 40x 40 two-
dimensional quadratic grid such that each protein profile
is associated with the most similar grid point using the
Euclidian distance as criterion. The grid points are called
‘meta features’. Then the method iteratively adjusts the
meta-feature profiles in small increments to agree better
with the observed protein profiles. In consequence, the
resulting two-dimensional map of meta-profiles optimally
covers all protein profiles observed experimentally.
Moreover, the map becomes self-organized, which means
that proteins of similar profiles are clustered together,
whereas proteins with distinct abundance profiles localize
in different regions of the map.
The training thus translates the abundance data given

as N × M matrix (N = 2037: number of proteins, M= 24
number of time points in mean volunteer) into a K × M
matrix (K = 1600: number of meta-features). Each pro-
teomic phenotype is visualized by color-coding the grid
points in the two-dimensional grid of meta-features

according to their abundance values from red to blue
for high to low abundance values, respectively. Neigh-
bored meta-features tend to be colored similarly owing
to their similar profiles. In consequence the obtained
mosaic images show a smooth texture with red and blue
spot-like regions referring to clusters of over- and
under-expressed proteins, respectively.
The SOM portraying methods has been applied before

to different omics data including also proteomics data
for MALDI-typing [18] (see also [19] and references
cited therein). In extensive benchmark tests we showed
that SOM outperforms alternative methods for dimen-
sion reduction of high-dimensional data [13]. Finally,
parameter settings for optimal performance of the meth-
ods have been systematically studied before [13,14,19].

Spot module selection, enrichment analysis and Beta
correlation testing
To identify groups of co-expressed proteins we applied
an over- and under-expression spot module selection
method: It first averages each meta-feature value over
all individual expression states considered and then
selects the maximum and minimum 2-percentile of
them, respectively. Then the spot-modules were defined
as closed areas of adjacent, i.e. mutually connected
meta-features in the map. Alternatively we tested two
different module selection methods based on correlation
and K-means clustering, respectively (see supplementary
text).
Proteins from the same module are co-abundant in

the experimental series and define a functional module
according to the ‘guilt-by-association’ principle [20]. We
applied gene set enrichment analysis to discover the
functional context of the module using a data base of a
few thousand predefined gene sets according to gene
ontology (GO) classification as described in [14]. Enrich-
ment scores are calculated using either Fishers exact test
or the ‘gene set enrichment Z-score’ (GSZ) as proposed
in [21]. The former score estimates the probability that
the number of proteins from the set is found in the list
of proteins in a module given the total number of pro-
teins studied. The GSZ-score in addition considers the
degree of overexpression of the proteins in the spot (see
also [14] for details).
Interrelations between the spot modules are character-

ized in terms of the weighted topological overlap network
(wTO) based on correlations between the meta-features
as described in [12]. It considers not only direct correla-
tions between all pairwise combinations of meta-features
in the spots but also ‘mediated’ ones acting via all possi-
ble third meta-features in the map [22].
We adapted a multi-test-adjusted correlation test

based on beta-test statistics as proposed previously [23]
to estimate the significance of concerted expression of
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the proteins in each of the modules identified. This test
calculates the significance that the group of proteins col-
lected in a given module shows concerted abundance
profiles. Significance is estimated using the beta value of
each spot. It is defined as the squared ratio of two sum
correlations, namely of the sum correlation between the
mean module profile and the single feature profiles of
the module and the sum correlation between all single
features of the module. Our method substitutes the sin-
gle feature profiles by the profiles of the respective
meta-features to reduce the computational efforts. The
beta test statistics is transformed into a p-value which
estimates the multi-test-adjusted probability of the null
hypothesis, namely that the single protein expression
values of the module do not correlate each with another.
Details of the method are given in the Supplementary
Text section provided as Additional file 1.

Pathway signal flow analysis of selected KEGG pathways
The Pathway Signal Flow (PSF) algorithm evaluates the
changes in signal flows for a given pathway depending on
the pathway topology and relative protein expression mea-
sured [24]. Particularly, it evaluates how a signal from net-
work inputs spreads downstream from source nodes to
sink nodes depending on the relative expression of the
proteins forming the nodes and the types of interactions
between them [25]. The more changes in the pathway
flow are observed, the more it is likely that the given path-
way will be involved into biological processes underlying
the phenotypic differences between the conditions studied.
The relative expression of a node is calculated as the mean
of the relative abundance (fold change) of all items in the
given node. The PSF method uses Kyoto Encyclopedia of
Genes and Genomes (KEGG) Pathway database as the
source of molecular pathway information [26]. We com-
pared PSF time profiles with the time profiles of selected
modules to assign the respective biological functions as
described in Additional file 1.

Time trajectories
Time trajectories aim at visualizing the time-dependent
changes of the proteomics phenotypes studied. We
applied standard sample similarity analysis using 2nd

level SOM and independent component analysis (ICA).
Both methods project the samples into ‘similarity space’
which allows establishing the trajectory as the sequence
of subsequent time points. Similarity analysis compares
the protein expression states as seen by the SOM por-
traits. It uses the abundance of meta-features as the
input data, which has the advantage of improving the
representativeness and resolution of the results [13]. We
applied 2nd level SOM analysis as proposed in [27] to
visualize the similarity relations between the samples.
This method has the advantage that it projects also

high-dimensional multivariate data into two dimensions
which allows their straightforward evaluation. Its disad-
vantage is that the obtained phase space is scaled non-
linearly and non-orthogonally with respect to different,
mutually independent variables. We therefore also
applied ICA [28] to the SOM meta-feature data using
the R-package ‘fastICA’. It distributes the samples in the
phase space spanned by the components of minimal
mutual statistical dependence. These components point
along the directions of maximum information content
in the data which is estimated by their deviation from a
(non-informative) normal distribution [29].

Additional material

Additional file 1: Supplementary text includes supplementary
methods, results, figures and tables.

Additional file 2: Lists of differentially expressed proteins in the
overexpression spot modules.

Additional file 3: List of proteins in the K-means clusters
segmented in the SOM of absolute protein abundance data.

Additional file 4: Single volunteer proteomics data.

Additional file 5: Protein abundance matrix used for SOM analysis.
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1 Supplementary methods 

1.1 Beta correlation test of spot modules 
We consider a spot-module taken from the SOM map representing a cluster of s=1,…,S meta-features which, in 

turn, are ‘micro-clusters’ of ns single features. In total, the spot thus contains 
1

S

s
s

P n
=

=∑ single features. Meta 

features and single features are given as time profiles of protein expression values (Ept, Est
meta, respectively) central-

ized with respect to their mean value, averaged over all time points t=1,…, T of the measurement: 
 

1

1

1

1
, 1...

T
meta meta meta
st st stT

t
T

pt pt ptT
t

E E E and

E E E p P

=

=

∆ = −

∆ = − =

∑

∑
,         (1) 

 
respectively. The ∆E thus define differential expression values given in units of the mean binary detection level 
(E=0 for absent and E=1 for present). Each spot cluster is characterized by the spot-averaged expression profile  
 

1 1

1 1S P
spot meta
t S st pt

s p
E n E E

S P P= =

∆ = ⋅∆ ≈ ∆
⋅ ∑ ∑ .        (2) 

 
The latter equation considers the fact, that each meta feature profile is given to a good approximation by the aver-
age over all single features of the microcluster. The meta-feature profiles in Eq. (2)are weighted with the respective 
numbers of single features per meta-feature. 
We now aim at testing whether spot

tE∆ is significantly co-expressed with the set of single expression values con-

tained in the meta-features of the spot pte∆ or not. For this purpose we make use of the correlation test introduced 
previously [1, 2]: It states that the correlation of a set of variables xtp(p=1,…,P; t=1,…,T) with a selected variable yt 
is significant at level a if it meets the condition 
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The diagonal matrix D with the elements ( ) ( )( ) 1/2
1/2var( ) 'pp p p p p pd X X X X X

−
−= ≡ − − z-normalizes Xp, 

the column vectors of X. 1

1

T

p tpT
t

X x
=

≡ ∑  denotes the respective column-average (in Eq. (3), analogously for Y and 

Z). Eq. (3)states that the beta test statistics is distributed according to the beta-distribution, 
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1/2 /2 2 1
1 2

2( ) (1 ) / ( , )
2

T Tf beta beta beta BETA− − −
= ⋅ − . 

 
Eqs. (3) - (4) apply to Eqs. (1) - (2) if one simply sets  
 

spot
t t tp pty E and x E= ∆ = ∆  .         (5) 

 
The test statistics can be expressed as  
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where q is the ratio of two sum correlations, namely the correlation between Y and Z and the correlation between 
the columns of Z, i.e. 
 

' ' '1/2
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( ) '( )
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p p
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Y
− −
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respectively. Then the p-value estimates the probability that the single features in the spot cluster are not signifi-
cantly correlated and thus not co-expressed,  
 

1
1 2

2~ ( , )
2p

Tbeta BETA −
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Let us assume 
 

2
1 1

' '
1 1 1 ' 1 1 ' 1
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p s p p s s
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to a good approximation, i.e. we replace the sum correlations of the single features with that of the meta features 
and weight them with their populations. Accordingly, the elements of the X-matrix in Eq. (5) should be replaced 
with 
 

meta
sp psx E= ∆    .         (10) 

 
The beta test was also applied to the meta-features of the map. In this case Eq. (3) applies with  
 

,meta
t st tp pt metay E x E and P n= ∆ = ∆ = .        (11) 

 
It relates the sum correlation of the single features with the meta feature to the mutual sum correlation of the single 
features. 
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1.2 Pathway signal flow analysis 
Biological pathways are directed and spatially defined sets of bio-molecular physical and regulatory interactions 
that represent information propagations (or signal flow) leading to functional realizations of biological processes. 
Thus, molecular pathways can be represented as directed graphs with nodes corresponding to genes, proteins, and 
compounds and edges depicting directed relationships between nodes (Figure S 1). 

 

 
 

Figure S 1: Fragment of the KEGG Pathway Wnt-signaling pathway map image and corresponding graph object parsed from 
the KGML file.  

 
Graph structure representation is often used to store pathway information in machine-readable format, usually, as 
xml files. For KEGG pathway images graph structures are stored in KGML (KEGG pathway xml format) files that 
can be used for automated analysis of pathways. Using KEGG parser - a Matlab tool for parsing and editing path-
ways maps we obtained graphs object for 258 pathways containing in KEGG pathway database[3]. Different inter-
action types present in KEGG pathways (i.e. phosphorylation, de-phosphorylation, ubiquitination, methylation, 
glycolysation, indirect effect, binding, etc.) were generalized in terms of their functional effect into two types: acti-
vation and inhibition.  
Pathway topology is an important characteristic of a pathway and is pivotal for its functioning. The terminal 
(source and sink) genes seem to be more important from the viewpoint of signal transduction, than genes located in 
the middle of the pathway. On the other hand, pathway branching and mean number of interactions per gene may 
also highly influence gene-expression dependent signal transduction. Next parameter influencing pathway activa-
tion is the expression level of individual genes/gene products ingiven pathway. Expression, being the marker of 
gene/protein activity in the cell, is estimated based on the amount of mRNA/protein that has been synthesized from 
the given gene. Thus based on these two parameters it is possible to identify how pathway activity can be changed 
compared to reference state.  
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Figure S 2: Schematic representation of PSF algorithm workflow on hypothetic pathway graph. 

 
Figure S 2 schematically shows main steps of pathway signal flow (PSF) calculation. It starts with topological sort-
ing of pathway graphs to identify source (input/ gene1) and sink (output/outcome) nodes. Feedback loop containing 
pathways is sorted partially. After this step an initial unity signal is applied to the pathway source node(s). The sig-
nal flow at the outgoing edge is set equal to the product of input signal and relative expression of source node:  
 
Si= Si-1

kRi,  
 
where Ri is the relative expression of node i; Si-1

k is signal flow at the node incoming edges. k defines the activation 
exponent with k = 1, if node (i-1) activates node i and k = -1, if node (i-1) inhibits node i. If a node has two or more 
inputs, its relative expression is partitioned based on the value of input signals and then it is summarized. Signal 
flow at the sink nodes of a pathway is considered as pathway signal flow (PSF). Significance of pathway flow per-
turbation is calculated by reshuffling node relative expressions 1000 times and constructing the empirical distribu-
tion. 
We compared temporal profiles of spot expressions with profiles of pathway flow perturbations in order to identify 
pathways associated with each spot cluster derived from SOM analysis. Temporal association of pathway signal 
perturbations with spot expression were performed using regression. R2>0.8 cutoff for association was chosen.  
It should be noted that many pathways have more than one functional outcome. For example activation of WNT 
signaling pathway (Figure S 3) may cause activation of Cell Cycle, Adherens junction pathways, proteolysis, gene 
expression trough activation of NFAT, etc. Thus differential activation of genes belonging to different pathway 
branches may lead to perturbations of different outcomes. In such multi-branch pathways PSF and its significance 
is calculated for each functional outcome separately. 
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Figure S 3: Example of multi-branch pathway map. 
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2 Supplementary results 

2.1 Independent component analysis 
The 2nd-level SOM presentation as used in the main paper is advantageous because it visualizes multivariate rela-
tions within a relatively simple two-dimensional image using however distorted non-linear distance metrics. We 
analyzed similarity relations using independent component analysis (ICA) projecting the samples in linear scale. 
Figure S 4 shows the sample trajectory in the three-dimensional space spanned by the first three independent com-
ponents (IC1 – IC3) obtained after independent component analysis (ICA).  
ICA virtually confirms the results obtained using 2nd level SOM presented in the main paper: During the experi-
ment the samples move along the first independent component (IC1), until week 6 in one direction and afterwards 
backwards (‘early time range’). Both oppositely directed parts of the trajectory refer to the ranges of high and low 
salt consumption, respectively. They are shifted each to another along IC3 so that the system doesn’t reach its start-
ing point after the experiment.  

 
Figure S 4: Independent component analysis (ICA): The left part shows the three dimensional distribution of samples in the 
space spanned by the first three independent components IC1, IC2 and IC3. The right part shows two-dimensional projections 
into IC1/IC2 and IC1/IC3 planes.  

 

  



9 
 

2.2 Supporting maps: population, variance and entropy maps 
The population map color codes the number of single features per meta-features in the map (Figure S 5). Empty 
meta-features not containing single features are colored in white. The single features mainly cluster into three re-
gions which can be assigned to features up-regulated in the early and in the late (and the intermediate) time ranges 
and to single spiked and rare features as indicated. Most of the proteins refer to the former cluster (see the table in 

Figure S 5). The variance map visualizes the variance of each meta-feature profile, 
2var / ( 1)meta

m mt
t

E T= ∆ −∑
(m=1…M denotes the number of meta features), using an appropriate color code (red to blue means high to low). It 
reveals that the highly variant profiles in the early_up and late_up clusters are separated by the region of relatively 
invariant single-spiked profiles.  

The entropy map plots the standard entropy of each meta feature profile, 
3

2
1

logm mi mi
i

h p p
=

= −∑  where pmi is the 

relative frequency of three levels of protein expression, overerexpression (i=1), underexpression (i=2) and non-
differential expression (i=3), in the profile of meta feature m. To estimate pmi we divided the expression values of 
the meta feature profiles in to three levels by application of a defined threshold (here the 25- and 75-percentile of 
all meta feature expression values was used). hm is restricted to values in the interval [0, log2 3]. An entropy value 
of 0 represents a perfectly ‘ordered’ profile, where all meta-feature values are assigned to only one of the expres-
sion levels. Contrary, the maximum value of log2 3≈1.58 is reached if the meta-feature values of the profile uni-
formly distribute over the three levels. The entropy is an information content measure by definition. A virtually in-
variant profile with a low entropy consequently reflects the fact that it is almost uninformative with respect to the 
time course of protein expression. Contrarily, a high entropy value means that the information content of the re-
spective profiles is high. Note that variance and entropy reveal similar but partly also complementary properties of 
the meta-features: A low variant profile is typically less informative with low entropy too. A highly variant profile 
however can possess only medium entropy because it lacks maximum diversity (e.g. if it shows a high but constant 
differential expression). Finally, profiles of maximum diversity and thus maximum entropy usually of medium var-
iance only. Comparison of the variance and entropy maps in Figure S 5 reveal an interesting substructure of the 
high variant areas: Particularly, one identifies a region of less diverse but highly differently expressed profiles in the 
to-right corner of the map.  
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Figure S 5: Supporting maps characterizing the meta-feature landscapes. The population map visualizes the occupation of meta 
features with single features (blue to red refers to 1 to 67 single feature/meta features, white are empty meta features). The vari-
ance map color codes the variance of the meta feature profiles red (high variance) to blue (small). The entropy map color codes 
the entropy of the meta-feature profiles from red (high entropy) to blue (low). The ranges referring to early and late time ranges 
are separated by areas of low populated, low variant and low entropy meta-features. Note that the entropy in the area of highest 
variance near the top right corner of the map is only medium because the respective profiles are less diverse than that in the 
ranges of intermediate variant meta-features. 
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2.3 Spot module selection 
We compared three different methods to identify groups of co-expressed proteins that we call modules: (i) Over- 
and under-expression spot-modules are calculated by averaging each meta-feature value over all individual ex-
pression states considered and then selecting the maximum and minimum 2-percentile of them, respectively. 
Then the spot-modules were defined as closed areas of adjacent, i.e. mutually connected meta-features in the 
map. (ii) Correlation spot modules are calculated using a ‘seed algorithm’ starting with the pair of meta-features 
showing the largest Pearsons correlation coefficient between their profiles. Then adjacent meta-features are add-
ed to this module if the mutual correlation coefficient with the seed features exceeds a certain threshold (here 
0.5). Otherwise a new seed-pair is selected among the still ‘free’ meta-features (i.e. that which are not assigned 
to another correlation module so far) defining a new module which grows by adding adjacent free meta-features 
using the same correlation threshold. This algorithm is repeated until no seed-pair satisfies the correlation crite-
rion. (iii) K-means cluster modules are calculated by applying K-means clustering to the profiles of the meta-
features using the Euclidian distance between them as similarity metrics. The desired number of cluster is set to 
the number of overexpression spots determined before. Note that K-means clustering assigns all meta-features to 
a certain cluster whereas overexpression and correlation clustering leaves a certain number of meta-features un-
assigned with respect to the clusters determined. 
Figure S 6 (upper part) illustrates that the degree of area occupancy of the map increases in this order. In the 
supplementary material we present a series of so-called supporting maps which have been designed to analyze 
intrinsic properties of the SOM [4]. The population map shows that the proteins distribute heterogeneously over 
the map and preferentially accumulate in the regions of overexpression in the early (27 %) and late/intermediate 
(20 %) time ranges. About 53 % of the proteins are classified into invariant and ‘single spiked’ ones as will be 
discussed below. They are of limited interest here.  
The overexpression spot criterion selects 388 (19% of all) proteins where about 178 (46% of selected) can be 
assigned to the interesting fraction of variable profiles, not referring to the invariant or single spiked proteins. 
The correlation and K-means cluster methods select 1,288 (63%) and 2,038 (100%) proteins, respectively, where 
however the fraction of interesting proteins increases only slightly to 63% (correlation spots) and 47% (K-means 
spots). The heat maps shown in Figure S 6 document that either of the methods well reproduces the time course 
of the system in terms of spot profiles. We applied beta-testing to estimate the significance of the protein clusters 
selected by the different methods (see next subsection). It turned out that spots selected in the upper right and 
lower left regions of the map, independently of the clustering method, collect clusters of proteins concertedly 
changing with time whereas proteins in the remaining regions in the map do virtually not. 
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Figure S 6: Comparison of overexpression, correlation and K-means spot selection methods: Note that each method selects 
cluster-areas of different size and shape in the SOM map (see the colored areas in the respective maps). Temporal sequence 
of protein up-regulation follows roughly the spot trajectory as indicated by the arrows in the overexpression map. The heat 
maps show the mean abundance of each spot (red…high, white…low) sorted in temporal order in vertical direction. Essen-
tially one finds analogous abundance patterns for all methods. All clusters are assigned by letters: Enlarged plots and lists of 
proteins in each of the overexpression spots are provided in additional file 2.. 

 

2.4 Estimating beta significance of meta-features and spot modules 
The beta map in Figure S 7 color codes the beta value of each meta feature (log10-scale), thus estimating the degree 
of mutual correlation between the meta feature profile and the profiles of the associated single features (see Eq. (3)
). It again identifies the late_up and early_up regions by large beta values. The spot significance maps shown in the 
lower panes in Figure S 6 color code the spot clusters obtained by means of three independent methods according 
to their log10p values obtained by means of the beta test described above. The clusters are largely insignificant in 
the region of rare and single-spike profiles meaning that their meta-features are not co-expressed in terms of corre-
lated profiles. Note that the p-value is governed by q2 (see Eq. (6)) which scales with the variance of the meta-
features (Eq. (7)). Hence, highly variant regions of the map (see Figure S 5) well match to regions of significant 
spot clusters. 
Figure S 7 compares the beta-test significance maps of the mean-volunteer and the single volunteer analyses. The 
exact localization of the spots differs between both maps because they were obtained in independent training runs. 
The number of significant spots and their split into an early_up and a late_up cluster agree between both maps. On 
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the other hand, the number of insignificant single spike spots largely increases in the single volunteer map owing to 
the fact that these profiles mostly refer to proband-specific spikes. 
 
 

 
 
Figure S 7: Beta test significance maps of spots obtained using the overexpression, correlation and K-means clustering meth-
ods. Significance for each spot was estimated using the correlation beta test. Green to brown refers to log10p<-0.5 (overexpres-
sion and K-means clustering spots) and log10p<-0.25 (correlation cluster). Single spiked and rare spots are found in the central 
area of the map. They are insignificant in terms of correlated set of genes included in each of the spots.   The beta map visual-
izes the log beta value of each meta-features (see Eq. (3), blue refers to small values, red to large ones). 
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Figure S 8: Beta test significance maps of the overexpression spots obtained in the ‘mean volunteer analysis’ (left, see also Fig-
ure S 7, left panel) and ‘single volunteer analysis’ (right). In both maps insignificant spots accumulate in the central area of the 
map. Their number is much larger in the ‘single volunteer’-map (~30) than in the ‘mean volunteer’-map (~10) whereas the 
number of significant spots roughly agrees (8-10). Note also that spot overexpression changes with time either in counter-
clockwise or in clockwise direction in both maps due to the independent SOM training of the data. 

 
2.5 Alternative spot selection: correlation and K-means clustering 
Figure S 9 shows the spot profiles of the significant expression modules obtained by means of the correlation clus-
tering and K-mean clustering methods together with the most enriched gene set per module. Profiles and leading 
gene sets mostly agree between the different methods. Note that the K-means cluster modules contain the largest 
numbers of single proteins whereas the overexpression modules contain the least number of proteins with correla-
tion clusters in between. 
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Figure S 9: Spot profiles and top enriched gene set per spot as seen by the correlation spot (part above) and K-mean clustering 
(part below) module selection methods. Selected single-spiked spots are shown in the K-means clustering map only.The verti-
cal axis of the profiles is scaled in units of differential expression, ∆E, representing the mean binary detection level centralized 
with respect to the mean expression in all samples at all times (see supplementary text).  
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2.6 Overexpression spot analysis: protein lists 
Figure S 10 lists the proteins in the overexpression spots ranked with decreasing significance as estimated using the 
correlation t-test. 

 
Figure S 10: Proteins in the overexpression spot modules. 

 
2.7 Spot related pathway signal flows 
For functional assignment of the spots we applied pathway flow analysis. Using the protein abundance data at each 
time point PFA provides pathway flow data for selected proteins in the overexpression spots. Note that in contrast 
to gene set enrichment analysis PFA uses the topology of selected pathways in combination with the protein data 
independent of the location of the proteins in the map. Spot assignment was obtained by correlating the pathway 
flow profiles with the mean meta-feature profiles of each spot and choosing the spot profile of maximum mutual 
correlation coefficient.   
Figure S 11 shows the mean spot profiles (red) of selected spots together with the pathways showing strongest cor-
relation of the PFA values of selected proteins (blue curves). Early and intermediate time range responses are asso-
ciated with inflammatory processes, cell adhesion, ECM-receptor and antigen processing in qualitative agreement 
with the results of gene set enrichment analysis. Interestingly, metabolisms of nucleotides (purine and pyrimi-
dine),of fatty acids (butanoate, pyruvate) and of amino acids (cysteine, metheonine and lysine) are also activated in 
this time range reflecting specific changes of the activity of liver and, partly kidney tissues in agreement with the 
results of tissue analysis (see below). Increased concentration of these metabolites in blood is characteristic for 
starvation when nucleotides and fatty acids are converted into glucose as evidenced by substrate balances across 
organs [5]. Intermediate time responses tentatively reflect regenerative (Wnt-pathway) and recombinant (N-glycan 
biosynthesis) processes [6]. Observed late time responses (p53- and mTOR-signaling pathway and ubiquinone bio-
synthesis) are indicators for cellular responses to different types of stress such as hypoxia and DNA damage, for 
nutrient and/or energy deficiency [7] and for changed energy metabolism. 
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Figure S 11: Pathway flow analysis of selected overexpression spots referring to different time ranges. The mean expression 
profiles of the spots are shown in red whereas the respective PFA-profiles are shown in blue below together with the respective 
pathways and outcome-genes in parentheses. 
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2.8 Mapping of selected protein groups 
We mapped groups of genes obtained in previous studies [8, 9] to our SOM space. The proteins collected in clusters 
87, 83 and 9 (see [9] for assignments and details) accumulate in different areas in the early time region of the map 
(Figure S 12). Cluster 87 has been shown to associate with salt effects [9].  
Figure S 12 shows the position of proteins commonly detected before and after space flight in urine samples of 
MIR cosmonauts and of the volunteers of the isolation experiment (group ‘constant’), detected in either the space 
flight or the isolation experiment (‘variable’) or detected only after space flight (‘flight specific’). The proteins are 
found in the regions of early and of late responses as well. 
 

 
 
Figure S 12: Mapping of selected protein species from three clusters studied and defined previously [9]. The dashed ellipses 
indicate regions of increased local densities of the proteins from the three clusters. Cluster 87 is associated with salt effects. 
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Figure S 13: Mapping of selected proteins to SOM: Constantly present under physiological conditions and after flight (sym-
bol x), variably present (symbol +) and specifically expressed in urine samples of cosmonauts after flight (symbol O). Data 
are taken form ref. [8]. Most of the ‘constant’ and ‘variable’ proteins belong to the single spiked and rare spot areas whereas 
the flight specific accumulate in the early_up region, meaning that these species are down regulated before and after isola-
tion experiment. 

 
 
  



21 
 

2.9 Single volunteer analysis 
The spot textures of the individual volunteer SOM cannot be directly compared to that of the mean volunteer 
analysis because both SOM are trained independently. One gets however an analogous number of about 9 – 10 
overexpression spot clusters with continuous profiles containing 12 – 61 features per spot. These profiles reflect 
the essential properties of protein kinetics for each of the probands as observed also in the mean volunteer SOM 
(Figure S 14). Detailed inspection of these profiles reveals for example, that, the late regime spot characteristics 
of P5 in the measurements before isolation is due to a slightly reduced overall level of the abundance of the re-
spective proteins compared with the other probands but not to a different time course (see spots H, P and Y in 
Figure S 14). 
In addition, our algorithm detects about 30 spots of the single spiked and rare type (Figure S 15): Each of these 
profiles shows at minimum one spiked protein expression and contains about 20 single proteins. These spots are 
insignificant in terms of correlated sets of proteins ( -log10p(beta)>0.1). Moreover, each of them was found in less 
than 5% of the samples and contains usually less than 20 features per spot. They show typically strong positive, 
spike-like outliers in one or a very few samples only. We attribute these spots tentatively, to technical errors of 
the measurement and/or to very specific physiological effects of unknown origin. These spots were excluded 
from further discussion because of their singular character. Importantly, the SOM sorting algorithm reliably sep-
arates such features from the features responding continuously to the experimental conditions. The identification 
of such spiked profiles would allow us to study the origin of this effect more in detail and also to develop and to 
apply suited correction methods. These issues are however beyond the scope of this publication. 
Figure S 16 shows the gene set enrichment heatmap of the single volunteer analysis. Most of the enriched processes 
‘switch’ in a coordinated fashion in the different volunteers. One sees however also individual differences, e.g. the 
volunteers show different degrees of immune response during the experiment.  
An alternative approach to extract single volunteer information is illustrated in Figure S 17: It shows the so-called 
profiling map which is obtained by training of a coarse grained SOM of size 10x10. Each tile of the map compares 
the profiles of the individual probands referring to the respective meta features. The profiles roughly divide into 
early_up, intermediate_up and late_up types which show an almost concerted expression among the probands. A 
fourth group of profiles indcates stronger individual differences in different time ranges of the experiment. Owing 
to the smaller number of meta features the individual profiles are less resolved as in the larger 40x40 standard map. 
Single and rare profiles mostly collect in the range of ‘individual’ profiles. 
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Figure S 14: Protein abundance profiles of overexpression spot clusters. The heat map provides an overview over the abun-
dance profiles (dark brown to blue indicate high to low abundance levels, respectively). The right part selects profiles show-
ing continuous responses, i.e. not referring to so-called single-spiked or rare profiles (these data are shown in the supple-
mentary text). The spiked profiles can be identified in the heat map: They are characterized by single-brown colored bars 
due to high abundance levels of single or only a few protein species at single time points only (see also the supplementary 
text for full profiles). Note that the profiles of proband no. 5 (P5) reveal either low (spots H and P) or high (spot Y) abun-
dance levels in the early time range compared with the respective spot profiles of the other probands which causes the devi-
ating abundance portraits (see the main paper) and course of the sample trajectory of P5. On the other hand, the shapes of 
the profiles of P5 in general agree with that of the other probands showing that the specifics of P5 refer rather to absolute 
protein abundance levels and not to relative changes during the experiment. 

 
 
 
 



23 
 

 
 

Figure S 15: Protein expression profiles of overexpression spot clusters. The heat map provides an overview over the expres-
sion profiles (dark brown to blue indicate high to low expression levels, respectively). The right part selects profiles referring to 
so-called single-spiked or rare profiles. 
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Figure S 16: Global enrichment analysis heat map of the single volunteer analysis: The map clusters top GO-sets of the catego-
ry ‘biological process’ enriched in overexpression spots of the time series. Key processes are listed in the right part of the fig-
ure. Brown to grey indicates high-to-low enrichment estimated using the GSZ-score. 
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Figure S 17: Meta-feature profile map of single volunteer analysis: A coarsely resolved 10x10 SOM was trained with single 
volunteer data. The profile map compares the time profiles of the probands P1 – P6 (see legend for assignment) in each of the 
meta feature tiles. Profiles divide into early_up,  intermediate_up, late_up and ‘individual’ profiles. Profiles of selected tiles are 
enlarged.  
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2.10 Organ related protein expression 
We analyzed selected tissue-related sets of proteins as described in the main paper. Figure S 18 shows the results 
for a series of tissues which can be roughly divided into early responders (pancreas, liver, kidney), intermediate 
(muscle) and late (testis, stomach) responders and into tissues weakly or not responding to the experiment (skin, 
lymph node, blood, prostate, brain, colon). The type of response is clearly documented in the respective GSZ-
profiles which plot the gene set enrichment score of the set as a function of time. Here all protein expression values 
of the set are considered, compared with the mean expression of all proteins considered and normalized using the 
variance of the expression values of the set: 
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The GSZ-value thus estimates the consistency of differential expression of the set members compared with the 
mean expression of all genes in a given state. The GSZ consequently characterizes the expression of the whole 
protein set.  
In addition we show so-called protein set population maps which mark the positions of the protein species of each 
set in the average volunteer SOM. Accumulation of the proteins in regions assigned to a certain time range (see red 
rectangles) indicates that the set is affected by the experiment. 
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Figure S 18: Tissue specific protein expression: Tissue specific protein sets are taken from TiGR[10] and mapped into the sin-
gle volunteer map (left part). The red rectangles illustrate regions of increased local density of the respective proteins. These 
regions refer to different time ranges. The set-profiles shown in the middle part clearly reveal the different time profiles in the 
average volunteer analysis. The respective single volunteer analysis reflects similarities and proband-specific differences be-
tween their tissue expressions.  
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2.11 Mapping and profiling of selected GO protein sets 
Below in Figure S 19 selected protein sets are mapped into the SOM map of average volunteer analysis using the 
same presentation as for the organ related protein expression in Figure S 18. The bar plots show their average and 
volunteer specific profiles. The plots support the results obtained using spot analysis and gene set enrichment heat 
maps shown above.  
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Figure S 19: Mapping and profiling of selected GO gene sets into the single volunteer map (left part). The red rectangles illus-
trate regions of increased local density of the respective proteins. These regions refer to different time ranges. The set-profiles 
shown in the middle part clearly reveal the different time profiles in the average volunteer analysis. The respective single vol-
unteer analysis reflects similarities and proband-specific differences between the mean expression of the sets selected. 
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2.12 SOM analysis of absolute protein expression levels 
We trained a SOM with total expression values Ept instead of ∆Ept (see Eq. (1)). This way, absolute levels of protein 
expression were taken into account. Recall that the expression is defined as the mean detection call of the respec-
tive proteins in all six probands. It adopts a value between 0 and 1 defining the fraction of present calls obtained. It 
means for example that for a value of unity all proteins are detected in all probands. The obtained SOM portraits 
reveal less structured expression landscapes compared with the SOM of centralized values showing essentially only 
one global expression maximum and one expression minimum spot in red and blue, respectively. Their position 
only weakly shifts in the course of the experiment (see the portraits in Figure S 20). These spots obviously collect 
permanently high and low expressed proteins, respectively. The question arises whether these landscapes contain 
similar information about the differential expression of groups of proteins detected at early, intermediate and late 
times of the experiment by means of the SOM analyses performed so far. With this aim we generated the 2nd level 
SOM of absolute expression landscapes. It closely resembles the respective plot of the centralized data (Figure S 
18a). The sample trajectory clearly divides into the three time ranges revealing this way that the individual portraits 
contain the full information in this respect. The spot trajectory (Figure S 20b) can be assigned to the time ranges 
discussed so far. In addition to the permanently up and down profiles a ‘late down’ one is identified (see the de-
tailed profiles shown in Figure S 20 below). 
In the next step we used the supporting variance and entropy maps in combination with K-means spot clustering to 
segment the map into different modules of co-expressed proteins (Figure S 21):  
a) The area of low variance and low entropy can be attributed to permanently low expressed proteins. About 63% 
of all proteins show this kind of behavior.  
b) The area of high variance and high entropy collects proteins permanently highly expressed (7%).  
c) The area of high variance and high entropy refers to proteins highly expressed in the early and intermediate time 
ranges only (late down, 13%).  
d) Profiles of proteins up-regulated in the intermediate time range only possess medium variance and entropy val-
ues (7%). These medium values indicate that the high expression states are observed only at a few time points giv-
ing rise to relatively sharp peaks in the profiles.  
e) Late_up-regulated proteins collect in a second area of high variance and high entropy (7%) which is however 
well separated from area b).  
Each of these areas splits into several K-means cluster modules of slightly different profiles (see Figure S 21 and 
Figure S 22). Their inspection reveals a continuum of different shapes which partly cannot be clearly assigned to 
one of the groups defined above. Instead, they occupy a sort of intermediate position between them. We therefore 
used the K-means cluster spots for functional analysis using protein set enrichment. We used ‘area-filling’ K-means 
clustering because we aim at taking into account all proteins. 
Detailed inspection of the spot modules in Figure S 20 shows that a group of about 65 proteins with an inflammato-
ry signature are permanently expressed over the whole period of the experiment. The profiles of the remaining 
spots of module b) and especially of module c) decrease more or less sharply in the late time range. These modules 
thus contain the proteins which deplete at low NaCl consumption in the late phase of isolation. Interestingly, part of 
the spot profiles express onerelative sharp peak in the early time range (spot F and D) or a second one in the inter-
mediate one (e.g. spots M, L, B and F). This second peak becomes more pronounced in intermediate-time mode d). 
The third peak protrudes already in a few spots of this mode but it becomes much more intense in the late mode e) 
together with the fourth peak near the end of the experiment. Hence, the more or less constant or decreasing pro-
files in modes b) and c) overlay with peaked profiles with maxima at distinct positions (as indicated by the asterisks 
in the figure). Functional analysis essentially supports the results of the previous analysis using centralized expres-
sion profiles.  
In summary, absolute expression analysis shows that a series of processes become activated in relatively narrow 
time windows at four fixed times during the experiment, namely at or immediately before isolation (angionesis, 
complement activation and others), at or immediately after reducing salt consumption to 9 g/day (focal adhesion 
and cytoskeleton) and to 6 g/day (cell differentiation and organ development) and near the end of the experiment 
after isolation. The latter trend suggests recovery of the initial state before starting isolation. Double peaked profiles 
combine peaks at late and intermediate times (e.g. metabolic process and apoptosis).Importantly, immune response 
processes are permanently active during the experiment with a slight decay in the late time range. 
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Figure S 20: Sample and spot trajectories of absolute expression SOM analysis: a) 2nd level SOM mapping of the total expres-
sion data of the ‘averaged volunteer’. The trajectory divides into an early, intermediate and late regime in agreement with the 
respective results obtained from centralized data. Note that the portrays (see the small images) are much less structured show-
ing only one red spot compared with the portraits obtained using centralized data. b) Overexpression summary map of the 
SOM images: The red and blue spots refer to permanently present and almost absent proteins, respectively.  
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Figure S 21: Supporting maps (first row of figures) used to segment the K-means spot map (second row) into six absolute ex-
pression modes as indicated by the black curves connecting the spots of each mode. The heat map shows the expression level 
of each spot (red refers to high, white to low expression). The table assigns the characteristic variance and entropy levels to the 
modes and provides the number and fraction of proteins per mode. 
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Figure S 22: Expression profiles of the K-means spot clusters of each of the modes a)-f). Enriched protein sets from the GO-
terms biological functions, cellular component and molecular function in each of the spots are listed in the boxes in the right 
part. The number of proteins per spot is given as #protein_number. The asterisks indicate the peak positions observed also in 
the overall profiles (see main paper). Note that the scale of vertical expression axis changes from plot to plot. The vertical red 
dumbbell scales an expression value of 0.1 (module a only) or 0.2. Full protein lists of each of the spot modules are provided in 
additional file 3. 
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