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Background and Introduction

Critical Assessment of Massive Data Analysis (CAMDA) 
addresses methodological challenges posed by the huge and ever 
increasing amount of data produced by new high-throughput 
technologies. It is expected that the exponential growth of high-
throughput data in public databases will continue throughout 
the coming years.1,2 The falling costs of data generation are, how-
ever, contrasted by the increasing costs for adequate analyses, a 
development that has been called “the $1,000 genome and the 
$100,000 analysis” problem.3 Analysis challenges, in the first 
instance, arise from elementary hardware requirements such as a 
need for large data storage facilities, high-capacity network infra-
structure, and computing power to handle the huge amounts of 
data. In the second instance, researchers need faster bioinformat-
ics algorithms, e.g., for sequence analysis and data screening, and 
appropriate efficient software implementations. Last but not least, 
tools to exploit the information content of the data in an effective 
and intelligent way are urgently required in order to extract new 
insights. This includes tasks such as compressing and filtering of 

high dimensional data, feature selection, linkage with the bio-
logical context using previous knowledge, and visualization. This 
is particularly important because an intuitive visualization of 
massive data supports quality control, promotes the discovery of 
qualitative relationships, and facilitates the development of new 
hypotheses. A contest study of the Microarray Quality Control 
Consortium (MAQC) involving 17 teams of researchers showed 
that differences in proficiency between data analysis teams, espe-
cially in their experience levels, could strongly affect the quality 
of analysis results.4 This finding emphasizes the need for easy-
to-use, intuitive, and easy-to-interpret data analysis approaches.

With this motivation, we here apply self-organizing maps 
(SOMs), a feature-centered clustering method from the field of 
machine learning,5 to a data set of large scale gene expression pro-
files from Glioblastoma Multiforme and prostate cancer patients. 
The Glioblastoma Multiforme profiles formed one of the offi-
cial contest data sets of CAMDA 2011. The prostate cancer pro-
files extend and complement the application range for which we 
demonstrate our method. For an unbiased examination of can-
cer, an integrative approach is required to investigate complex 
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self-organizing maps (sOM) portray molecular phenotypes with individual resolution. We present an analysis pipeline 
based on sOM machine learning which allows the comprehensive study of large scale clinical data. The potency of the 
method is demonstrated in selected applications studying the diversity of gene expression in Glioblastoma Multiforme 
(GBM) and prostate cancer progression. Our method characterizes relationships between the samples, disentangles the 
expression patterns into well separated groups of co-regulated genes, extracts their functional contexts using enrich-
ment techniques, and enables the detection of contaminations and outliers in the samples. We found that the four GBM 
subtypes can be divided into two “localized” and two “intermediate” ones. The localized subtypes are characterized by 
the antagonistic activation of processes related to immune response and cell division, commonly observed also in other 
cancers. In contrast, each of the “intermediate” subtypes forms a heterogeneous continuum of expression states link-
ing the “localized” subtypes. Both “intermediate” subtypes are characterized by distinct expression patterns related to 
translational activity and innate immunity as well as nervous tissue and cell function. We show that sOM portraits provide 
a comprehensive framework for the description of the diversity of expression landscapes using concepts of molecular 
function.
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gene–environment interactions, rather than a testing of individ-
ual genes or pathways. Our method thus simultaneously searches 
for features which are differentially expressed and which are cor-
related in their profiles across the studied samples.6 We aim to 
merge these genes into functional modules that are defined as 
sets of genes associated with a particular biological process (e.g., 
inflammation, cell division, etc.), and seek to characterize dis-
ease-specific changes in the resulting interaction network.

As a special feature, SOMs can highlight molecular pheno-
types at different resolutions. We will demonstrate the power of 
our method in characterizing the diversity of gene expression pro-
files across cancer subtypes by providing a modular view of the 
gene expression patterns. The resulting portraits guide further 
functional analyses and allow an identification of misclassified 
samples contributing to new insights and improved quality con-
trol in large clinical studies.

Results and Discussion

Hook-calibration of GBM expression data and comparison 
with RMA

We applied our own microarray data preprocessing pipe-
line, which includes hook calibration, quantile normalization, 
and centralization scaling (see Supp. File 1). Hook calibration 
allows identification of batch effects and hybridization biases 
due to varying scanner settings, washing effects, and different 
amounts and quality levels of RNA (Supp. File 1). Our prepro-
cessing pipeline thus differs in many respects from the standard 
RMA preprocessing used to generate the Level 2 Glioblastoma 
Multiforme (GBM) expression data from the TCGA website. 
The analysis results we present below are therefore largely inde-
pendent of previous analyses based on RMA expression values 
which, for example, have been used for classification of GBM 
subtypes.7

As it may be debatable which preprocessing approach performs 
best, in the absence of an accepted “gold standard,” we compare 
analysis results using either method (Supp. File 1). Preprocessing 
seems to have little of an effect on the most prominent properties 
of the expression landscape (and thus the classification of can-
cers into different subtypes) or the biological context of the main 
expression modules, with some differences for individual genes 
only found at intermediate and lower expression levels, which are 
not further investigated here.

First level SOM portraits of tumor samples and subtypes
Our SOM machine learning algorithm transforms the whole 

genome expression landscape of a patient into one mosaic image, 
consisting of 40 × 40 tiles for prostate cancer progression (PCP) 
or 50 × 50 tiles for GBM, with each tile representing one “meta-
gene.” These meta-genes serve as prototypes of groups (“mini-
clusters”) of co-regulated genes, the number of which usually 
varies from meta-gene to meta-gene. Figure 1 and Figure 2 dis-
play the 1st level SOM portraits of the expression landscapes in 
GBM and PCP samples, respectively. We sort them into different 
groups following previous classifications of cancer subtypes or 
progression stages.7,8 Each mosaic image exhibits a characteristic 
texture serving as a fingerprint of the transcriptional activity in 

the respective cancer sample. These images reveal regions of over- 
and underexpression (“spots”) which characterize the different 
cancer subtypes in GBM (Fig. 1) and stages of PCP (Fig. 2). 
Relatively stable and consistent spot-patterns can dominate (e.g., 
for MES and PN samples of GBM) or relatively heterogeneous 
and volatile patterns can be observed (e.g., for CL and NL sam-
ples of GBM).

We calculate the mean SOM-portrait of each class (GBM sub-
type or PCP stage) by averaging patient samples for each meta-
gene. On one hand, this averaging may cancel out individual, 
highly fluctuating features. On the other hand, it amplifies con-
sistent class-specific features. For example, the MES subtype of 
GBM and normal brain tissue are characterized by two spots in 
opposite corners of the map, one overexpressed and the other 
underexpressed in MES samples and vice versa in normal (NOR) 
samples. These class-specific spots collect highly populated meta-
genes with a strong and well delineated signal (see the supporting 
maps in Supp. File 1). The mean portraits of the other three 
GBM subtypes are more diffuse: the PN, CL, and NL subtypes 
are characterized by two or three specific spots per subtype.

The mean stage-related PCP portraits show similar properties. 
Some regions are involved in more than one PCP stage. The spots 
of subsequent stages tend to overlap, and also spots of the final 
MET and the initial BPH stages tend to overlap. Overall, the 
stage-specific spot pattern thus “rotates” along the border of the 
map in a clockwise direction with progressing cancer.

The log-logFC scale amplifies small expression levels in the 
individual sample portraits. The mean portraits in log-logFC 
scale show essentially the same basic features as those in logFC 
scale. They are, however, richer in details, enabling the identifica-
tion of more subtle differences between the subtypes. For exam-
ple, the mean log-logFC portraits of the MES and PN subtypes 
of GBM are complimentary to each other, i.e., overexpressed red 
regions in the MES-image largely correspond to underexpressed 
blue regions in the PN image, indicating strongly anti-correlated 
expression patterns in the two subtypes.

In summary, SOM images capture the individual sample 
expression landscape in terms of characteristic color portraits, 
which enable a visual inspection of subtype-specific features, with 
spot-like regions representing clusters of differentially expressed 
and co-regulated genes. In addition, averaging over groups of 
samples and the considered application of different color scales 
selects and amplifies subtype- or stage-specific features.

Characterizing the expression phase space: Second level 
SOM and ICA

The 2nd level SOM analysis visualizes the similarity between 
individual 1st level SOM portraits, with tiles representing “meta-
samples.” The four GBM subtypes show a clusters of samples in 
different, and well separated regions of the map (Fig. 3A and B), 
consistent with earlier subtype specifications.7 The ten normal 
samples (subtype NOR) occupy a very compact area in the top 
right corner of the map. Their SOM portraits most closely resem-
ble those of the neural subtype (NL), namely both subtypes show 
a common overexpression spot in the bottom left corner in the 
individual portraits which are not present in the mean portraits 
of the other GBM subtypes.
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As a complementary method, and for comparison, indepen-
dent component analysis (ICA) was applied to the 1st level SOM 
portraits. Three dimensional and two dimensional component 

plots are shown in Figure 3C and D for GBM, with samples 
similarly separated. Additional information can be extracted 
from the distribution of the subtypes along the independent 

Figure 1. sOM gallery of GBM subtypes. The small mosaic images refer to selected individual tumor samples assigned to four GBM subtypes and normal 
brain tissue. The large mean images are calculated by averaging over all samples of each subtype (see Materials and Methods section). The images in the 
left part of the figure use a logFcscale where Fc denotes the fold change of the expression of each meta-gene with respect to its mean expression in all 
samples (maroon to red refers to the 90-percentile and light to dark blue to the 10-percentile thresholds, respectively). This highlights areas of strong 
differences. The right part uses the smoother log-logFc scale, which increases the contrast in areas of weaker signals. Up and downregulated meta-
genes are colored in red and blue, respectively. The sOM here uses a quadratic grid of size 50 × 50 to distribute the expression profiles of the 22.777 
genes available on the hT-hU-hGU133a arrays studied. a complete gallery of all individual sample portraits is available in Supplemental File 2. The 
population map showing the distribution of genes is shown in Supplemental File 1.
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component axes IC1, IC2, and IC3. The GBM subtypes mainly 
separate in the IC1/IC2 plane whereas the normal (NOR) sam-
ples separate from most of the cancer samples along the IC3 
axis. The MES and PN subtypes systematically differ in their 
IC2 coordinate whereas the NL and CL subtypes can be dis-
tinguished by their IC1 coordinate. Hence, the two groups of 

subtypes are obviously characterized by two sets of genes that 
change independently. These, in turn, are mostly independent 
of those that differentiate between cancer and normal samples 
along the IC3 axis. Also, the NL samples varying along this com-
ponent reflect the similarities of expression patterns between NL 
and normal samples.

Figure 2. sOM gallery of PcP stages. see legend of Figure 1.The sOM uses a quadratic grid of size 40 × 40 to distribute the expression profiles of the 
4,181 genes available on the human 20K hs6 arrays studied. a complete gallery of all sample portraits is available in Supplemental File 3. The popula-
tion map showing the distribution gene numbers is shown in Supplemental File 1.BPh = benign prostatic hyperplasia, PIN = prostatic interepithelial 
neoplasia, Pca_low = low-grade, Pca_high = high-grade, and MeT = metastatic stages of prostate cancer.
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The different PCP stages, in contrast, are located in extended, 
largely overlapping regions in the 2nd level SOM representa-
tion (Fig. 4A). The first and final stages (BPH and MET) can 
be better distinguished, whereas the intermediate stages, PIN, 
PCA_low, and PCA_high, are found essentially in the same 
region of the map. The U-shaped “trajectory” of the progression 
reflects the fact that a significant portion of the genes is similarly 
expressed in the initial BPH stage and the final MET stage, but 
differently expressed in the intermediate PIN and PCA stages.

In summary, the 2nd level SOMs visualize the similarity of 1st 
level SOM spot patterns in terms of partly overlapping regions 
representing the different subtypes. In general, the symmetry of 
the spot patterns in the 1st level mean SOM portraits and the 

arrangement of the subgroups in the 2nd level SOM show similar 
and partly complementary properties. The complementary ICA 
analysis allows an estimation of expression change dependencies 
associated with the different subtypes.

Characterizing pairwise similarities between portraits: 
Dendrograms and correlation nets

We calculated Pearson correlation coefficients based on the 
meta-gene states, comparing all pairwise combinations of samples 
as an alternative approach for studying similarities between the 
samples (see the pairwise correlation maps in Supp. File 1). The 
obtained covariance structure of the data are visualized using the 
maximum spanning tree (MST) and the correlation net (CN) rep-
resentations shown in Figure 5. Importantly, all these visualizations 

Figure 3. The 2nd level sOM and Ica similarity analysis of GBM cancer subtypes. (A) The position of each GBM sample is marked by the respective 1st 
level sOM image. samples of the same GBM subtype are connected by lines drawn to the centroid of the respective class. (B) The regions occupied by 
the samples of the four subtypes are represented by the colored polygons. The mean sOM portraits of each GBM subtype are located in the center of 
the respective polygon. The four GBM subtypes occupy roughly the four quadrants of the map whereas the 10 normal tissue samples aggregate into one 
tile of the sOM in the top-right corner of the map. (C) The three-dimensional distribution of samples in each GBM subtype and normal tissue samples 
is shown in the space spanned by the three leading independent components Ic1 – Ic3. (D) The projection of the GBM subtypes into the Ic1/Ic2-plane.
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of similarities are based on the meta-genes, providing a better reso-
lution comparison than single gene-based similarity analyses due 
the lower noise after SOM dimensionality reduction.6,9

The MST plot shows a chain-like structure which connects the 
samples with the strongest mutual correlations. This has the key 
advantage that it converts multi-dimensional clusters into a rela-
tively simple graph. The CN representation, in turn, transforms 

the data into a more detailed network of data points. It also con-
siders weaker mutual correlations, shown as lines between the 
respective samples. The lengths of these lines are approximately 
inversely proportional to the respective correlation coefficients.

The MST and, especially, the CN plots of the GBM data set 
reveal similarities between the GBM subtypes which are less evi-
dent in the 2nd level SOMs (compare Fig. 5A and Fig. 3B): For 

Figure 4. The 2nd level sOM Ica similarity analysis of PcP stages. (A) The 2nd level sOM polygon representations of PcP stages. Note that the spot pat-
tern in the mean expression maps of PcP virtually rotates with progressing cancer giving rise to a U-shaped trajectory in the map (see arrows); (B) Three 
dimensional Ica.

Figure 5. similarity analysis of the two tumor data sets: (A) GBM and (B) PcP. Maximum spanning trees (MsT) are shown in the left panels together with 
selected sOM portraits of each subtype. The middle panels show the corresponding correlation nets, while “phylogenetic” cluster trees are provided in 
the right panels for comparison.
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example, the CN plot suggests that the NL and PN subtypes 
share more similarities with the NOR reference samples than the 
CL and MES subtypes. Note also that the PN and MES samples 
accumulate within compact clusters whereas the CL and NL 
clusters are fuzzier. The CL subtype forms a continuum between 
the MES and PN samples, which distribute along two separate 
branches. The CN plot forms a “donut-like” structure composed 
of alternating compact and fuzzy clusters. The intermediate NL 
and CL subtype samples in the fuzzy clusters link the compact 
MES and PN subtype clusters.

These similarity relationships could be transformed into 
star-like dendrograms similar to phylogenetic trees using the 

neighbor-joining algorithm with Euclidean distance metrics 
(Fig. 5, right panels). The more localized MES and PN subtypes 
form clearly separate branches whereas the intermediate NL and 
CL subtypes occupy several more central branches. The dendro-
gram for GBM finally reveals that the NL samples group along a 
separate branch together with the normal samples (NOR).

The CN and dendrogram plots of the PCP samples show a 
slightly different, backbone-like structure, reflecting the tempo-
ral progression of prostate cancer. As a rule of thumb, the mutual 
distance increases with progressing stages (BPH to PCA_low, 
to PCA_high). The final stage MET samples, however, are 
again found near initial stage BPH samples, consistent with the 

Figure 6. Overexpression spot characteristics of GBM. (A) The overexpression summary map collects all spots with overexpression observed in the indi-
vidual profiles into one map. GBM subtypes associated with particular spots are indicated in the map. (B) construction of the overexpression spot map 
defining the spots used for further analysis. spots are labeled by capital letters. The blue rectangles include highly correlated spots (r > 0.7). The blue and 
red dashed lines connect correlated (0.4 < r < 0.7) and anti-correlated (r < -0.6) spots respectively. c) The heatmap shows the mean meta-gene expres-
sion for each spot a..O.. The samples are sorted according to their subtype membership as indicated along the top of the figure . (D) The bar plot shows 
the fraction of samples of each subtype which exhibit a given spot. The total bar length represents overall frequency, while colors indicate the frequency 
by subtype. The average numbers of spots in the portraits of each subtype are given in parantheses in the top right legend (Mes = Mesenchymal, PN = 
Proneural, cL = classical, NL = Neural, NOR = Normal).
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U-shaped arrangement of the PCP stages in the 2nd level SOMs 
(see Fig. 4A), suggesting a greater similarity between the first and 
final stages than between the first and intermediate PCA_low 
and PCA_high stages.

Describing the expression landscapes: Spot analysis
In the next step, we analyze the spot patterns on SOM por-

traits to identify differences and common properties shared 
between the cancer subtypes. Unique or more common spots 
can provide information about the functional impact of gene 
activities specific to cancer subtype. Fig. 6A shows the overex-
pression summary map of GBM, which collects all spots with 
overexpression observed in the individual GBM portraits into 
one master map (see also6). Each distinct region of meta-genes in 
the portraits exceeding a certain overexpression threshold (typi-
cally the 98-percentile in at least one sample) defines a spot on 
the overexpression map, labeled by capital letters in Figure 6B. 
In total, we identified 15 such spots, “A” to “O,” for GBM. Lists 
of genes contained in the spots are given in Supplemental File 8. 
Figure 6C visualizes the mean expression level across the meta-
genes of each spot for all samples. This heatmap thus provides 

an overview over the subtype-specific expression activity in each 
spot. For example, spot “G” and partly also spot “F” are selec-
tively overexpressed in the MES subtype, and spot “I” in the NL 
subtype, whereas spots “M” and “O” show sample specific activ-
ity, not specific to any subtype.

Our spot selection algorithm thus identifies both rare and 
frequent spot patterns. We next assess the relative frequency x

sc
 

of each spot (see Equ. 7 in Materials and Methods). As shown 
in Figure 6D, the most abundant spots (K, F, and N) are found 
in about 30% to 50% of the samples of all five subtypes. They 
are, however, relatively unspecific for tumor subtypes. Spot “F,” 
for example, is found in almost every MES sample, in about 
40% of the PN and NL samples, and some PN samples. Spot 
“K” appears in 40% of the NL samples, about 80% of the PN 
samples, and in nearly in every normal sample. In contrast, other 
spots are more specific to particular subtypes: Particularly, spot 
“C” is largely occurs in the CL subtype, spot “G” is unique to 
MES, and spot “I” largely occurs in the NL subtype. Other spots 
such as “D,” “E,” and “H” are very rare with relative frequencies 
less than 0.1.

Figure 7. Overexpression spot characteristics of PcP. see legend of Figure 6 for details. The arrow in (A) represents the appearance of overexpression 
spots with cancer progression.
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In order to discover covariance between the meta-gene expres-
sion profiles in different spots, we calculated pairwise correla-
tion maps and maximum spanning trees exploring relationships 
between spots (see Supp. File 1). As a rule of thumb, neighboring 
spots are strongly positively correlated and spots located in oppo-
site corners of the map are often strongly anti-correlated. For 
example, spots “C,” “G,” and “F” are highly correlated (Fig. 6B, 
blue dashed lines), whereas the spots “I” and “N” are anti-corre-
lated (Fig. 6B, red dashed lines).

Spot analysis of PCP (Fig. 7) detects 15 spots with overexpres-
sion, and only 6 are relatively frequent (x

sc
 > 0.2). Ten spots are 

observed in MET samples, reflecting that the expression patterns 
of the metastatic cancer samples are highly diverse with spots 
located in nearly all regions of the map. In contrast, the PIN 
and BPH samples show only 3 and 4 spots with overexpression, 
respectively.

Analogous results from analyzing spots with underexpression 
are in line with these observations (Supp. File 1 and see below).

Global characteristics of the expression landscapes
In the next step, we characterized the global properties of the 

expression landscapes, such as the extent of variability, typical 
spot numbers and shapes for each data set. Meta-gene variance 
and the circularity of spot shapes in the log-logFC portraits 
change similarly across GBM-subtypes. Moreover, the frequency 
of spots with overexpression decreases as spot circularity and the 
variance of meta-gene expression increase (Fig. 8A). Hence, the 
variability of meta-gene expression, the number of spots with 
overexpression, and their circularity/fuzziness are obviously 
closely related properties. Highly variant meta-gene landscapes 

observed in NOR samples are associated with less and more 
compact spots than those with less variant meta-genes typically 
observed for the intermediate NL and CL subtypes. The shape of 
the spots in logFC and log-logFC scales reflect different aspects 
of the data: For example, the mean spot circularity of NL is the 
smallest among the GBM subtypes in log-logFC scale portraits, 
whereas it has more variable and larger spot circularity in logFC 
scale portraits.

The MES, PN, and NOR subtypes have more stable expres-
sion landscapes than the NL and CL subtypes (Fig. 8A, fewer 
and less fuzzy spots) and they assemble into more compact clus-
ters in analyses of sample similarity (e.g., the PN samples in 
Fig. 5). The higher stability of the class specific spot patterns 
in the individual sample portraits thus seems related to compact 
clusters in similarity analyses and vice versa. This illustrates the 
relation between global properties of the expression landscape of 
each subtype and the degree of similarity between its individual 
samples. While for GBM more stable patterns (fewer and less 
fuzzy spots) are associated with larger differences in individual 
expression landscapes (meta-gene variance),for PCP one finds 
the opposite relationship, i.e., the increase of the metagene vari-
ance upon progressing cancer is associated with an increasing 
fuzziness of the spots especially in log-logFC scale (Fig. 8B).

The global characteristics of overexpression describe land-
scapes mostly in the range of intermediate and high expres-
sion levels. We also analyzed the landscapes in the range of low 
expression values by similarly studying underexpression. Results 
for over- and underexpression largely match, and differences are 
discussed in Supplemental File 1.

Figure 8. Global characteristics of the expression landscapes of cancer subtypes: (A) GBM and (B) PcP. From the left to right panels show meta-gene 
variance, Equation 3, the probability distribution of the portraits to show a certain fraction of spots with overexpression, and the spot shape parameter, 
Equation 6 of spots from portraits in logFc and log-logFc scales. The spot shape parameter reflects circularity, i.e., the fuzzier a spot, the smaller the 
shape parameter, Equation 6. The global characteristics of spots with underexpression are shown in Supplemental File 1.



10 systems Biomedicine Volume 1 Issue 2

Mapping subtype-specific differential expression
To extract unique, subtype-specific spot patterns, we calcu-

lated Difference Maps; see Materials and Methods, Equation 1. 
These maps select meta-genes over- and underexpressed specifi-
cally in only one of the GBM subtypes (Fig. 9) or PCP stages 
(Fig. 10). A meta-gene is represented in red (blue) if its expression 
value in the chosen subtype is higher (lower) than in all the other 
subtypes. The difference maps reveal subtype-specific over- and 
underexpression spots which largely agree with the features seen 
in the mean portraits of the respective subtypes. Non-specific fea-
tures, however, (such as the spot “N,” found in several subtypes, 
Fig. 6B and D) disappear by applying Equation 1, as expected.

In addition, we calculated mean rank maps as described previ-
ously.10 In short, a ranked list of differentially expressed genes is 
calculated for each sample using a regularized t-score as ranking 

criterion. The t-score takes into account the noise-level of expres-
sion values which is neglected in the logFC scale. The effective 
rank of each meta-gene is then calculated as logged mean rank of 
the associated genes (Figs. 9 and 10, rightmost columns).

Genes that are significantly overexpressed in a GBM subtype or 
a PCP stage relative to all the others have been determined using 
SAM significance analysis of microarrays11 before.7 We calculated 
the gene set enrichment scores GSZ, Equation 8, for the gene 
sets obtained there . The GSZ profiles in Figures 9 and 10 show 
that indeed each of these gene sets is specifically overexpressed 
in the respective GBM subtype or PCP stage and underexpressed 
in the remaining subtypes or stages. Interestingly, the original 
NL-specific GBM signature also shows overexpression in the 
healthy brain tissue, which had not been considered in the original 
study.7 For PCP samples, we compared stage specific significant 

Figure 9. subtype specific genes in GBM. Panels, left to the right: GsZ-score profiles for subtype specific gene sets reported earlier,7 Equation 8; the 
corresponding gene set population maps; the subtype mean in logFc scale; difference portraits, Equation 1; and rank maps. In the GsZ-profiles, each 
bar represents one sample, color coded according to subtype as before (e.g., Fig. 1). The ± signs above the profiles indicate over- and underexpression. 
In the gene set population maps, the number of genes from a gene set in each meta-gene is color coded from white (no gene) to maroon (maximum 
number observed). The red dashed ellipses indicate gene sets accumulating in distinct regions of the map, which to a good approximation agree with 
the subtype specific spots in the average and difference portraits.
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genes with gene sets taken from the original publications,8 con-
firming enrichment of expected biological pathways (Fig. 10).

Mapping global differential expression
A recent study12 identified 1,236 genes significantly differen-

tially expressed between GBM and normal brain samples in the 
TCGA repository, not considering GBM subtypes. Among these 
1,236 genes, we identified three sets: 425 strongly downregulated 
genes, 426 moderately downregulated, and 376 upregulated. The 
strongly or moderately downregulated genes largely accumulate 
in SOM spot “K,” whereas the downregulated genes mostly fall 
into the “C” and “N” SOM spots (Fig. 11, scatter plots). This 
pattern agrees well with the strongest over- and underexpres-
sion spots observed comparing the mean portraits of the normal 
(NOR) and the GBM samples (Fig. 11, heatmaps). The expres-
sion levels of the mean NOR and GBM heatmaps are strongly 

anticorrelated, i.e, strongly positive spots in the NOR are 
strongly negative in the GBM samples and vice versa, reflecting 
the fact that the expression amplitudes of NOR samples largely 
exceed those of the GBM samples. The extracted gene sets in 
this comparison thus cover only a small part of the expression 
modules detected in our differentiated SOM analysis. Spots of 
weak differential expression but of potential high relevance for 
discriminating the different GBM subtypes remain undetected. 
GSZ-profiles (Fig. 11, left panels) reveal that the three gene sets 
only weakly differentiate between the MES, PN, and CL sub-
types (yellow, green, blue). The profiles also show that the NL 
subtype (magenta) partly follows the expression patterns of nor-
mal brain (NOR, orange).

Results illustrate the benefits of our approach: It provides 
a detailed view on the compartmentalization of the expression 

Figure 10. stage specific genes of PcP, testing gene sets reported as overexpressed in different PcP stages.8 The gene sets marked with red dashed 
ellipses in the population map agree with the stage specific spots in the average and difference portraits. see legend of Figure 9 for details.
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landscape, which allows separate analyses of individual modules 
in terms of biological context. These can identify functional 
details that are easily missed in a simple differential disease vs. 
normal approach.

Discovering the functional context: Gene set profiles and 
population maps

Each spot in the SOM portraits represents a cluster of co-
regulated genes. We applied gene set over-representation analysis 
to each spot-cluster using a collection of about 6000 predefined 
gene sets for specific GO categories, pathways, diseases, human 
tissues, and cell types (see Material and Methods section). For 
each of the spots detected in GBM and PCP, gene sets with P ≤ 
0.0001 are listed in Supplemental File 1. Based on the functional 

context of the over-represented gene sets obtained, we assign a 
short label to each detected spot (see Fig. 12A for GBM, Fig. 13A 
for PCP, and Supp. File 1).

Spots in GBM are clearly related to biological processes asso-
ciated with cancer physiology, such as inflammation (Fig. 12C, 
spot “F”) and cell division (Fig. 12D, spot “N”), as expected. 
These GSZ-profiles reflect the fact that the respective biologi-
cal processes are selectively activated/de-activated in a subtype-
specific fashion, namely inflammatory response in the MES and 
cell division in the PN subtypes of GBM. The respective gene 
set population maps (Fig. 12C and D) reveal that the associ-
ated genes accumulate in the regions of spots overexpressed in the 
maps of the different subtypes (cf. Fig. 9).

Figure 11. Differentially expressed genes from a study comparing GBM vs. normal samples.12 among the differentially expressed genes reported, we 
identified three gene sets of comparable sizes: strongly downregulated (DN1), moderately downregulated (DN2), and upregulated (UP). The left part 
of the figure shows the GsZ-profiles and population maps of the three gene sets (color code as before, e.g., Fig. 1). In the right part, the first row shows 
the mean logFc, group specific difference, and mean rank maps of normal brain samples from our full sOM analysis. The second row shows the mean 
logFc map of all GBM samples and the difference of the mean GBM and NOR maps. The map in the bottom right panel shows the selected spots and 
their functional contexts.
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“Inflammatory response” and “cell division” are not among 
the leading gene sets of any of the spots in PCP (Supp. File 
1). The respective GSZ-profiles, however, show that “inflam-
matory response” is selectively activated in the BPH and MET  
stages, whereas “cell division” genes are overexpressed in  
the MET stage only (Fig. 13C and D). The population  
maps of these gene sets indicate that the respective genes  
accumulate in the regions of more than one overexpression  
spot. For example, larger concentrations of genes related to  
cell division are found in spots, for which the leading biologi-
cal processes/cellular components are “RNAPII activity” (spot  
“G”) and “ribosome” (spot “N”), whereas genes related to  
inflammation accumulate in spots assigned to “mitochondrion” 
(spots “J” and “K”) and “nucleosome” (spots “A” and “B”) 
(Fig. 13A).

Categorizing the gene sets: GO terms, cancer, and cell type 
related genes

Neighboring spots of strongly correlated meta-gene expression 
profiles can be assigned to related biological processes: As shown 

in Figure 12, the “inflammation” spot “F” in GBM is close to 
spots assigned to “wound healing” and “angiogenesis”; the “cell 
division” spot “N” is close to spot “O” labeled “innate immu-
nety,” where “stress activated signalling” was the most strongly 
over-represented gene set. Note that, although related, these 
neighboring spots are usually characterized by subtle differences 
in their expression profiles and presumably also by fine differ-
ences in the functional context of the over-represented gene sets. 
In Figure 14 we provide GSZ-profiles and population maps of a 
series of gene sets selected from the GO-terms “biological pro-
cess” (BP), “cellular component” (CC) and “molecular function” 
(MF) which change in concert with “inflammation” and “cell 
division.” The population maps clearly reveal these subtle differ-
ences: For example, both GSZ profiles of “immune response” and 
“wound healing” gene sets change together with inflammation 
and accumulate in adjacent but different regions of the maps of 
GBM (see Supp. File 1). The population maps of the “angiogen-
esis” gene set and, to a lesser degree, of the “wound healing” gene 
set, give rise to the overexpression of the respective GSZ-profiles 

Figure 12. Gene set enrichment analysis of GBM. (A) The spot summary map shows the functional context of the most abundant spots (boxed labels) 
together with the associated subtypes (NL, Mes, cL, PN). (B) The over-representation heat map of gene sets for the GO term “biological process” pro-
vides an overview. The different clusters correspond to the spots in the sOM portraits. The letters on the right refer to the spots identified in (A). The 
color bars on the top represent the GBM subtypes. (C and D) Overexpression profile and map of the “inflammatory response” and “cell division” gene 
sets, respectively. The red dotted ellipses in the map indicate the spots of strongest enrichment. The full list of enriched gene sets, over-representation 
heatmaps of different gene set categories, and a gallery of the overexpression profiles and maps are given in Supplemental File 1.
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Figure 13. Gene set enrichment analysis of PcP. (A) The spot summary map shows the functional context of the most abundant spots (boxed labels) 
together with the associated stages (MeT, BPh, PIN, Pca). (B) The over-representation heat map of gene sets for the GO term “biological process” pro-
vides an overview. The different clusters correspond to the spots in the sOM portraits. The letters on the right refer to the spots identified in (A). The 
color bars on the top represent the PcP stages. (C and D) Overexpression profile and map of the “inflammatory response” and “cell division” gene sets, 
respectively. The red dotted ellipses in the map indicate the spots of strongest enrichment. The full list of enriched gene sets, over-representation heat-
maps of different gene set categories, and a gallery of the overexpression profiles and maps are given in Supplemental File 1.

in the CL subtype, while underexpression was observed for other 
“inflammation”-like gene sets.

The results so far show that GBM splits into subtypes differ-
ing by the antagonistic activation of biological processes related 
to “inflammation” and “immune response” vs. processes related 
to “cell division” and “transcriptional and translational machin-
ery” (viz. MES vs PN). We have observed a similar separation of 
subtypes related to “inflammation” and “cell division” in B-cell 
lymphoma (BL, unpublished results). In order to evaluate the 
degrees of similarity between both GBM and BL cancer entities 
in this respect, we studied the enrichment of signature gene 
sets from BL in GBM (Supp. File 1): It turned out that the two 
signature gene sets up- and downregulated in the BL subtypes 
strongly accumulated in spots F and N (Fig. 12), which are 
overexpressed in the MES and the PN subtypes, respectively. 
This result suggests a more generic nature of the underlying 

processes related to “inflammation” and “cell division” in 
cancers.

We extended this comparative view by extracting low abun-
dance “rare” transcript sets deregulated in hepatocellular carci-
noma, breast carcinoma, and nasopharyngeal carcinoma.13 The 
resulting three gene sets were of poor prognosic value for “meta-
static cancer” related to the c-Myc oncogene14 and as a universal 
transcriptional profile essential in neoplastic transformation and 
commonly activated in many cancers.15 All three gene sets show 
GSZ profiles and population maps similar to the “cell division”-
like sets in GBM, i.e., mostly overexpressed in the PN subtype 
and underexpressed in the MES subtype (Supp. File 1). Two 
gene sets of “myc-poor-prognosis” (8 genes) and of “undifferenti-
ated_cancer” (16 genes) essentially occupy the same regions of 
the map as spot “O” in Figure 12, despite sharing just a single 
gene. Finally, the “common_cancer_gene” set is found in spot 



www.landesbioscience.com systems Biomedicine 15

“N.” This suggests that the low abundance “rare” transcripts 
might provide new signatures in addition to those from high 
abundance genes.

Gene sets related to “innate immunity” are found overrepre-
sented in spot “O” of the GBM map which is overexpressed in the 
CL- and PN- and partly also in MES-subtypes. The intermediate 
CL- and NL-subtypes of GBM are characterized by spots “A” and 
“F,” “C” (CL-subtype) and “I,” “J,” and partly “K” (NL-subtype, 
see Fig. 9). The latter spot “K” is characteristic also for healthy 
brain tissue. It is therefore not surprisingly that it contains over-
represented populations of gene sets related to “nervous processes” 
such as “synaptic transmission” and “neurotransmitter secretion.” 
Population maps and profiles are shown in Supplemental File 1. 
The NL-subtype however differs from the healthy brain tissue 
mainly by the appearance of spots “I” and “J” (see Fig. 9) which 
contain overrepresented gene sets related to “translation,” such as 
“ribosome” and “mitochondrion.” The CL-subtype-specific spot 
“C” related to “angiogenesis,” and thus reflects a common cancer 
process.

We further analyzed the relationship between gene sets and 
the cell type or tissue specificity in order to understand the bio-
logical meaning of the GBM subtypes. We collected the gene 
set enrichment level from the brain transcriptome database16 as 
proposed before.7 Mature cell types such as neurons, oligoden-
drocytes, astrocytes, and cultured astroglial cells may be of inter-
est for their primary associations with tumor subtypes and as 
inherent signatures retained from progenitor cells. In agreement 
with earlier studies,7 we found subtype specific enrichment of 
signatures: “oligodendrocytic” (in PN and NL), “astrocytic” (in 
CL and NL), “neuronal” (in NL), and “cultured astroglia” (in 
MES and partly CL); see Supplemental File 1. We also tested 
signatures for “developing astrocytes” (enriched in PN and partly 
NL) and “nervous tissue” (enriched in NL and NOR).

Our SOM mapping and profiling of the different signature 
sets, however, in addition provides a finer assignment to the 
different GBM subtypes: The “oligodendrocytic,” “neuronal” 
and “nervous system” genes accumulate preferentially in spot 
“K,” which is overexpressed in normal brain tissue. Its key 

Figure 14. selected profiles and population maps of “inflammatory response” gene sets for GBM. Regions of over-representation in the population 
maps are indicated by red-dotted ellipses. The letters refer to the corresponding spots in the sOM portraits.
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property in GBM is the antagonistic upregulation in NL and 
downregulation in CL subtypes. In contrast, the “astrocytic” 
signature genes accumulate in spot “A,” with the correspond-
ing upregulation in NL and CL subtypes and downregulation 
in MES and PN subtypes. Hence, the co-located spots “A” and 
“K” can be associated with different regulation patterns espe-
cially in NL and CL subtypes, while these can be associated 
with different cell types. Interestingly, the “astrocyte” signature 
strongly resembles that of the “aging brain_DN” set of genes 
which reduce their activity in the aging cortex17 and the GO 
term “negative regulation of cell death” (see Supp. File 1). The 
signatures of “nervous tissue” and “developing astrocytes” are 
enriched in spots “K” and “O,” respectively. They similarly 
respond in an antagonistic up-vs-down fashion in PN and MES 
subtypes. Note that spot “O” was associated also with biologi-
cal processes related to “cell division” such as “mitosis,” “DNA-
repair,” and undifferentiated cancer. Finally, while the signature 
genes of “cultured astroglia” also accumulate in spot “O,” they 
are found primarily in spots “G” and “F,” showing upregula-
tion in the MES subtype and antagonistic downregulation in 
normal brain tissue.

Gene set overview maps
For a more general overview of over-represented gene sets, 

we generated gene set enrichment heatmaps to survey a larger 
collection of biological functions potentially contributing to the 
expression landscape. These heatmaps collect gene sets signifi-
cantly over-represented in the SOM portrait spots in a sample-
specific fashion, and cluster them according to their degree of 
over-representation. Figure 12B and Figure 13B shows the 
heatmap for gene sets associated with the GO term “biological 
process” and enriched in spots of the GBM and PCP SOM por-
traits, respectively. The one-way clustering separates the gene sets 
in agreement with their spot associations: For example in GBM, 
spot “F” mainly collects gene sets overexpressed in the MES and 
also the CL and NL subtypes, whereas the adjacent spot “G” 
contains gene sets overexpressed in the MES subtype. The heat-
map also shows that gene sets from the spot “K” tend to be over-
expressed in normal brain tissue as well as in the NL and PN 
subtypes. It further associates gene sets overexpressed in the PN 
subtype with spot “N.” Complete heatmaps with detailed named 
gene set categories are given in Supplemental File 6 (GBM) and 
Supplemental File 7 (PCP).

Detailed inspection of the GBM heatmap reveals that the “cell 
division” spot “N” contains additional related gene sets such as 
“mitosis,” “DNA replication,” “spindle organization,” and “cell 
cycle checkpoint.” These sets refer to different levels in the GO 
hierarchy, partly giving rise to overlapping groups of genes which, 
in consequence, trivially link similar expression patterns.18 Here 
we neglect any interdependency due to such an overlap in gene 
sets, which may also arise across different GO categories and the 
curated gene sets from the literature. This redundancy might, 
however, highlight alternateve aspects of annotated gene func-
tion: For example, the PN specific spot “N” resembles the expres-
sion characteristics of the “cerebellum” tissue gene set, spot “G” 
is associated with “epithelium” and “primary lymphoic organs,” 
and “F” with “immune systems tissues” and “mucosa.”

In addition to one-way clustering heatmaps, we also per-
formed two-way clustering of gene sets and samples to detect 
inconsistencies in the class labeling of the samples. The result-
ing heatmaps for the literature gene sets (GSEA2) reveal that 
the cancer related gene sets essentially form two clusters with 
strong enrichment, respectively, in spots highly overexpressed in 
the MES subtype (spot “F” and “G”) and the PN subtype (spot 
“N”). This seems to reflect common gene activation patterns 
present in different tumors associated with either “inflamma-
tion” (for MES) or “cell division” (for PN). See Supplemental 
File 6 for supporting results and complementary analyses, 
including by cell-type.

Outliers, misclassified samples, and mixed subtypes
Large tumor sample collections are prone to different effects 

not, or not directly related to the disease such as varying tissue 
compositions, RNA quality, lab protocols, and high biologi-
cal patient-to-patient variance. The SOM portraits introduced 
here offer a simple and direct approach to checking the whole-
transcriptome expression landscapes of the individual samples 
by visual inspection for deviations from the majority of samples 
assigned to the same class.

In Figure 15 we show the CN similarity plot for GBM 
together with selected individual portraits of samples which are 
located either outside the main clusters or which seem to be mis-
clustered. For example, samples 326 (MES subtype) and 156 (PN 
subtype) are found near the PN and MES-clusters, respectively. 
Comparison of the portrait of sample 156 with the mean por-
traits of MES and PN subtypes shows that its expression land-
scape represents a combination of both subtype signatures, where 
the MES-signature more heavily contributes to the mixture than 
the PN-signature, in contradiction to the original class assign-
ment.7 Another heterogeneous group of samples (290, 152, and 
358) form a set of outliers near the CL cluster. Inspection of the 
respective portraits reveals that a few overexpression spots (“L,” 
“B,” and “D”) are responsible, as they are not observed in the 
majority of the remaining CL samples. Other outlier groups are 
samples 326, 84, and 87, showing strong expression of spot “n1.”

Outliers are mostly with different subtypes, and are relatively 
rare (see the abundance bar plot for spots “L” and “D” in Fig. 6). 
This suggests that they are presumably caused by contamination 
with non-tumor cells. Treatment effects may also generate outli-
ers: For example, gene set analysis shows that spot “B” contains 
an enriched number of genes related to “xenobiotics” and “drug 
metabolism” (Supp. File 1).

These examples demonstrate that our portraying approach 
cannot only detect potential outliers and misclassified samples 
but also helps researchers generate hypotheses about the origin of 
these effects and follow up, for example, by applying spot-related 
functional analysis.

Weighted topological overlap (wTO) correlation network 
analysis: Modular gene regulation the subtypes

Weighted topological overlap (wTO) network analysis allows 
a visualization of correlations between spots that include the 
effects of indirect interactions mediated by other meta-genes. The 
resulting wTO network of GBM (Fig. 16A) shows antagonistic 
relationships between spot “K,” which is upregulated in normal 
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brain tissue, and a first layer of spots upregulated in the subtypes 
MES (“G,” “F”), CL (“O,” “C”), and NL (“J” and indirectly 
“I”), while these spots are partly co-regulated with one another. 
A second layer of spots appearing in the subtypes PN (“N”), NL, 
and CL (“A”) changes in an anti-correlated fashion with respect 
to this first layer of spots. Another, well separated cluster seems 
to be formed by spots that presumably reflect contamination or 
other effects not related to cancer. The most abundant spot in this 
cluster (“L”) is positively correlated with the “nervous processes” 
in spot “K.” Hence, GBM features a group of expression mod-
ules anti-correlated with genes specifically upregulated in normal 
brain tissue (cf. “regulating synaptic activity” gene signature). 
These modules, in turn, are associated with functions common 
in cancer, such as “inflammation,” “angiogenesis,” “cell division,” 
“translation,” and “mitochondrial activity.” They vary specifically 
in the different subtypes, either in a correlated or anti-correlated 
fashion, with considerable mixing especially for the intermedi-
ate subtypes (NL and CL), which form rather a continuum of 

expression states than a distinct entity. These two intermediate 
subtypes on one hand and the two “separated” subtypes (MES 
and PN) on the other hand are governed by the antagonistic 
expression of independent gene activities, as revealed by sample 
similarity analysis using ICA and correlation nets (CN). Hence, 
“inflammation” and “cell cycle” activity for MES- and PN sub-
types on one hand and “translation” and “angiogenesis”/“innate 
immunity” for NL- and CL subtypes on the other hand change 
in an antagonistic fashion but are characterized by independent 
gene sets.

Interestingly, spot “A,” which is related to “axon injury,” is 
upregulated in the intermediate subtypes NL and CL, and is pos-
itively correlated with normal brain tissue activity (“K” in NOR). 
It is strongly downregulated in PN and MES subtypes, accompa-
nied by changes of the gene sets “synaptic transmission” (down), 
“mitochondrion” (down), “inflammation” (up in MES), and 
“DNA-repair” (up in PN). Cell-type specific functional analysis 
suggests that spot “A” is associated with astrocyte function and 

Figure 15. Outliers and misclassified samples in GBM in the cN similarity plot. The subtype-averaged mean portraits are shown for comparison at the 
left and right to the network. The red circles and letters identify the spots responseble for the deviations.
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enriched in genes which progressively lose activity in the aging 
brain17 (see Supp. File 1).

The basal structure of the wTO network of PCP (Fig. 16, right 
panel) shows a rather different picture: A series of spots upregu-
lated in different progression stages are co-regulated. They form 
a “backbone” with anti-correlated links to a second layer of mod-
ules. The backbone is formed by modules associated with “anti-
gene processing,” “cell cycle,” “mitochondrion,” “ribosome,” and 
“response to cyclic compound.” Note that most of the spots are 
rather heterogeneous and usually show increased activity in dif-
ferent PCP stages (Fig. 7). These mutually correlated backbone 
spots also reflect time delays between the different biological 
processes as illustrated in the GSZ-profiles of Figure 10. Spots 
“M” and “N” are mostly associated with the PIN stage enriched 
sets, related to “protein biosynthesis” and “androgen signaling” 
(Supp. File 1). These are the key processes defining cancer pro-
gression at early stages and particularly the transition from local-
ized to hormone-refractory metastatic prostate cancer8 (Fig. 10).

Interestingly, the “cell cycle” spot “O” forms a bottleneck 
between two separate clusters of spots. The cluster in the upper 
part of the graph is mostly associated with the early BPH stage, 
showing activated “antigene processing” and “response to pro-
gesterone stimulus” gene sets. The other cluster is associated 
with later stages which, in general, are characterized by activated 
mitochondrial, transcriptional, and translational machineries, 
as well as proliferation. Some of these modules are anti-corre-
lated: for example, the backbone modules “N” (ribosome) and 
“J” (mitochondrion) anti-correlate with “G” (proliferation), 
reflecting mutually antagonistic regulatory modes of the pro-
gressing cancer. Spot I (“response to cyclic compound”) appears 
relatively isolated from the rest of the network suggesting that 

it might be caused by contaminations or processes not related 
to cancer .

The wTO-network representation thus illustrates the mutual 
relationships between all the identified spots. The separation 
of positive and negative correlations extracts concerted and 
antagonist pairings of expression modules, which form a basal 
“skeleton” picture of the gene expression network of the cancer. 
Each node itself subsumes a sub-network of typically hundreds 
to thousands of genes with a defined functional context. The 
particular expression state of the nodes of the basal skeleton is 
characteristic for each subtype or stage, with possible relevance 
for classification and functional interpretation.

Outlook

SOM machine learning enables a kaleidoscopic and intui-
tive view of high-dimensional data without a loss of the primary 
information. It provides a general framework for analytic tasks 
such as feature selection, integrating concepts of molecular func-
tion and systems tracking with a resolution of individual sam-
ples. The method extracts abstract features such as meta-genes 
and spots/modules expressing basal modes of systems behavior 
important for higher-level, holistic analysis.

We applied SOM to expression profiles of glioblastoma mul-
tiforme (GBM) and prostate cancer (PCP) to characterize the 
specifics of the genome wide expression landscapes in different 
subtypes or stages of cancer. Our method simultaneously detects 
features which are differentially expressed and correlated in 
their profiles in the set of samples studied. Functionally related 
genes often merge into larger aggregates which can then be inter-
preted as functional modules. They characterize disease-specific 

Figure 16. Weighted topological overlap (wTO) networks of the expression spot-modules of GBM and PcP. The nodes represent the spots from Figures 6 
and 7. Red and blue lines indicate positive and negative correlations, respectively. The threshold for plotting overlaps is ω > 0.35. The text boxes list the 
dominant cancer subtype or stage, as well as the leading functional context obtained from gene set enrichment analysis.
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changes in the resulting interaction network. Characteristic dif-
ferences between subtypes and disease stages can be clearly iden-
tified and further analyzed using meta-gene profiles representing 
the intrinsic correlation groups. Our case study has demonstrated 
that analyzing gene expression landscapes in the context of a 
compendium of molecular concepts is useful in understanding 
cancer biology.

Ongoing tasks that build on this framework also address issues 
such as “interOMICs” integration, as well as the extension of the 
method to next generation sequencing and other data types.

Materials and Methods

Expression data
GlioblastomaMultiforme(GBM)
Microarray data are available on “The Cancer Genome Atlas” 

(TCGA) data portal (http://tcga-data.nci.nih.gov/tcga/). We 
downloaded level 1 (raw intensity) data of 153 GBM and 10 nor-
mal brain tissue specimen hybridized on Affymetrix HT-HG-
U133A arrays. We used the classification of tumor subtypes given 
in reference 7. The samples were assigned to Mesenchymal (MES, 
50 samples), Proneural (PN, 45), Neural (NL, 26), Classical 
(CL, 32) GBM-subtypes and to normal healthy brain (11) for 
comparison. The latter specimens were taken from adjacent brain 
tissue of GBM patients. In addition we also downloaded level 2 
(RMA preprocessed) data of the same patients for comparison 
with our hook-preprocessed data.

Prostate cancer progression (PCP)
Microarray data are available under GEO accession num-

ber GSE6099 (104 non-commercial spotted Human 20K Hs6 
arrays). The original study8 addresses the molecular mechanisms 
associated with gene expression changes in the course of prostate 
cancer progression using laser capture microdissection by means 
of 84 samples from 44 individuals. The samples used are assigned 
to five stages of cancer progression ranging from benign pros-
tatic hyperplasia (BPH, 22 samples) and prostatic interepithelial 
neoplasia (PIN, 13) to low-grade (PCA_low, Gleason score 3, 12 
samples), high-grade (PCA_high, Gleason score 4–5, 20 sam-
ples), and metastatic (MET, 17) prostate cancer.

Calibration and normalization
Raw probe intensity values of Affymetrix arrays for GBM 

were calibrated and summarized into one expression value per 
probe set using the hook method,19,20 quantile-normalized21 and 
corrected for background-noise as described in reference 6 and 
Supplemental File 1. Expression values of the custom PCP sam-
ple arrays were quantile-normalized. Then, the expression value 
of each gene was transformed into log10-scale and centered with 
respect to the mean value averaged over all samples considered in 
the respective series. A relative log-expression value of zero con-
sequently means that the gene is expressed according to its mean 
expression value while positive and negative values refer to over- 
and underexpression, respectively. We use the term “expression” 
for these relative expression values if not stated otherwise.

SOM training
The preprocessed expression values of each cancer data set 

are used to train an SOM. It translates the high-dimensional 

expression data given as N × M matrix (N: number of genes, M: 
number of samples) into a K × M matrix (K: number of meta-
genes) of reduced dimensionality K < < N (N ~ 104 and K ~ 103). 
The meta-gene profiles are obtained via iterative machine learn-
ing. First, the meta-genes are arranged in a two-dimensional qua-
dratic grid of K tiles where each tile refers to one meta-gene. After 
linear initialization22 of the meta-gene profiles, a single gene is 
picked from the gene list and its expression profile is compared 
with that of the meta-genes using the Euclidean distance as simi-
larity measure. The meta-gene profile of the closest similarity and 
its nearest neighbors are then modified, so that they more closely 
resemble the expression profile of the selected gene. This process 
is applied to all genes and repeated 250,000 times. The radius of 
considered neighbors is decreased with the progressive iteration 
which modifies fewer meta-gene vectors by smaller amounts, so 
that the meta-gene vectors asymptotically stabilize. The result-
ing map becomes organized because the similarity of neighbor-
ing meta-genes decreases with increasing distance in the map. 
The final SOM consists of regions of similar meta-gene profiles. 
In turn, each meta-gene serves as a representative prototype of 
a “microcluster” of genes with similar expression profiles. The 
differential expression of the prototypic meta-gene is defined as  
Δe

km
 = e

km
 − e

k•
, where e

km
 is the logged expression of meta-gene k 

in sample m and e
k•

 is the respective profile mean.
SOM staining
Each expression state is visualized by color coding the two-

dimensional mosaic of meta-genes according to their expression 
values in a sample. We first normalize the meta-gene expression 
data in each state to the range,  and then color 
code  according to two alternative scales: i) The “logFC” 
scale linearly transforms the normalized logged fold change, 

 into green to maroon for  and green to dark 
blue for  ii) The alternative “log-logFC”scale uses the 
double logarithmic scale log-logFC =  with 
the same color code as logFC. Note that log-logFC is steeper near 
Δe

km
 ≈ 0 which strongly condenses green regions and expands 

red (Δe
km

 > 0) and blue (Δe
km

 < 0) regions compared with logFC.
Average subtypespecific portraits are calculated as the mean 

value of each meta-gene expression over all phenotype portraits 
of one subtype,

(c is the class index of each subtype) followed by normalization 
and coloring in logFC and log-logFC scales.To extract subtype-
specific differential expression landscapes, we calculated differ-
ence maps, representing each meta-gene k in the mean SOM 
portrait of each subtype c according to:

  (1)

Equation 1 selects specifically over- and underexpressed meta-
genes in a subtype. Particularly, diff

kc
 > 0 (or diff

kc
 < 0) means the 

expression of subtype c in meta-gene k exceeds (or falls below) the 
respective meta-gene expression in all other subtypes considered. 
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diff
kc
 = 0 is obtained if the relative expression of the meta-gene 

selected is unspecific for subtype c.
Supporting maps and meta-gene variability
Additional information such as the population of the meta-

genes, the variance of meta-gene expression profiles, and the 
mean Euclidean distance with their nearest neighbors can be 
visualized using the same mosaic structure as in the expression 
portraits. The additional information is then color coded using 
proper scales. For example the variance map visualizes the vari-
ance of the meta-genes in each of the tiles,

   (2)

with Δe
k•

 = 0. We also calculate the orthogonal variability of the 
meta-gene expression landscape of each SOM image,

    (3)

where Δe
•m

 is the mean differential expression averaged over all 
meta-genes of sample m.

Detecting expression modules: Spot selection
The SOM algorithm arranges similar meta-gene profiles in 

neighboring tiles of the map, whereas more different profiles are 
located more distantly. As a result, neighboring meta-genes tend 
to be colored similarly. Therefore, the obtained mosaic portraits 
show typically a smooth texture with red/blue spot-like regions 
referring to clusters of over/underexpressed meta-genes. These 
blurry images represent the expression landscape of a particu-
lar sample. Meta-genes from the same spot mean that they co-
expressed in the experimental series. Different, well-separated 
overexpression spots in the same image refer to meta-genes over-
expressed in a particular sample but differently expressed in other 
samples because of their different profiles. Each spot can con-
sequently be interpreted as an expression module of a group of 
meta-genes (and of associated genes) with concerted expression 
profiles.

We define over/under expression spots by applying a simple 
98/2 percentile) criterion which selects the respective fraction 
of meta-genes with the top/bottom expression in each sample. 
Hence, the obtained over and underexpression spots are individ-
ual properties depending on the particular meta-gene expression 
in each sample. They can change their size from phenotype to 
phenotype and they can even disappear or transform from an 
over into an underexpression spot or vice versa.

Weighted topological overlap network of the spot modules
Networks provide a straightforward representation of inter-

actions between expression modules. We applied the weighted 
topological overlap network (wTO) approach to the meta-genes 
which considers not only direct interactions between all pairwise 
combinations of meta-genes but also “mediated” ones acting 
via all possible third meta-genes in the map.23 This “tree body” 
approach defines the topological overlap. The overlap ensures 
that strongly overlapping interactions (i.e., if both meta-genes 
strongly interact with the third one) contribute more than weak 

ones (e.g., if at least one of the meta-genes weakly interacts with 
the third one).

First, one determines the adjacency matrix between all meta-
genes i,j with their mutual Pearson correlation coefficient, a

i,j
 

∈[−1,+1], where self correlations were neglected, a
i,i
 = 0. Then, 

the weighted topological overlap (wTO) matrix was calculated 
according to (see ref. 24 and refs. cited therein),

    (4)

where

and

define the connectivity of the considered meta-genes i and j.
Equation 4 considers both positive and negative correlations. 

The topological overlap takes into account direct and indirect 
adjacencies between pairs of meta-genes “mediated” via all third 
party meta-genes u. We finally reduced the meta-gene pair topo-
logical overlap matrix to a spot-spot matrix after taking averages 
over all meta-gene pairs included in the spots s

1
 and s

2
),

     (5)

where K
s1
 and K

s2
 are the numbers of meta-genes included in the 

spots s
1
 and s

2
 respectively.

The spot wTO-matrix is visualized using the R package 
“igraph” by applying a threshold |ω| > 0.35.

Global spot characteristics
The spot characteristic analyses aim at characterizing global 

properties of the expression landscapes as seen by the over and 
underexpression spots. We calculated the mean spot number 
detected per subtype, the spot number distributions, the spot 
shape, their fractional abundance and a spot tree which visualizes 
the concerted expression changes between the spots.

The distribution of spot numbers was simply obtained as the 
fraction of sample portraits observed with one, two, etc. spots per 
subtype. The spot shape parameter, proportional to the classical 
definition of circularity,

shape
m
 = A

m
/L

m
2,     (6)

characterizes the fuzziness of the observed over/under expres-
sion spots in each sample portrait. A

m
 denotes the number of tiles 

included in all spots observed in the image and L
m
 is the num-

ber of tiles along their inner borderlines with at minimum one 
adjacent tile outside and one tile inside the spots. A

m
 and L

m
 thus 
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estimate the area occupied by the spots and their limiting contour 
length respectively. The shape parameter hence relates the actual 
area of the spots to an theoretical area defined by the square of 
their contour length. For a single spot the shape parameter value 
decreases if its shape progressively deviates from a circular one. 
For n non-overlapping spots of identical area (a

m
) and shape (l

m
 is 

their contour length), the total area and the total contour length 
scale with n and n2, respectively, namely, A

m
 = n ⋅ a

m
 and L

m
 = n2 

⋅ l
m
. The obtained shape parameter is inversely proportional to 

the number of spots. We calculated the shape parameter for the 
images in logFC and log-logFC scales independently to charac-
terize the spot landscapes at high and intermediate expression 
levels.

The abundance of each spot is calculated as the relative fre-
quency of appearance of each spot in the samples of each cancer 
subtype,

      (7)

where M
c
 is the total number of samples in the subtype c and 

m
sc
 is the number of portraits showing a particular spot s among 

those samples. The spot abundances are represented as stacked 
bar plot for each spot. The integral abundance,

can be interpreted as the average number of classes showing a 
particular spot. Its maximum value equals the number of classes 
considered, Xmax = 5 for both GBM and PCP.

Gene set overexpression profiles and population maps
Co-expressed genes of each expression module can be assumed 

to be functionally related according to the “guilt-by-association” 
principle.25 Gene set analysis aims at identifying the functional 
context of these expression modules. This method estimates the 
enrichment of groups of predefined gene sets which are obtained 
independently, for example from SOM spot analysis (see ref. 26 
for a critical review and references cited therein). Enriched gene 
sets suggest association between their functional context and the 
system studied. A large and diverse collection of such sets can be 
derived from GO27 using the biomaRt interface.28 Particularly, 
we included 5730 gene sets for GBM and 4349 for PCP in our 
analysis taken from the following categories (the different num-
bers are caused by the different chip types with different genes): 
i) GO gene sets (2192 GBM, 1054 PCP), composed of “biologi-
cal process” (1394 GBM, 643 PCP), “molecular function” (488 
GBM, 230 PCP) and “cellular component” (310 GBM, 181 
PCP); ii) canonical pathways (880 GBM, 812 PCP),compiled 
from Biocarta (217 GBM, 214 PCP), KEGG (186 GBM, 183 
PCP) and Reactome (430 GBM, 415 PCP); iii) curated gene sets 
taken from the literature on chemical and genetic perturbations 
(“literature sets,” 2392 GBM); iv) tissue specific gene sets (25 
GBM) determined previously10; and v) “special” gene sets taken 
from the literature on the cancer types addressed in this study 
(see below).

The “enrichment analysis” includes “over-representation” 
analysis, “overexpression” analysis, and their combination.10,29 
Over-representation estimates the probability to find members of 
a given set in a list, e.g., the genes included in a spot cluster, com-
pared with their random appearance independent of their expres-
sion scores. For any gene set, right-tail modified Fisher exact test 
was used to determine whether the number of genes within this 
set is overrepresented in a particular list of genes included in a 
spot-cluster. The hypergeometric distribution then provides a 
P-value for each set and spot which estimates the probability to 
find a stronger overlap between the genes in a spot cluster and 
the set than expected by chance given a certain total number of 
genes studied.37,38 We considered over-represented sets with P ≤ 
0.0001 which ensures reasonable adjustment for false positives in 
the multiple testing problem.

Contrarily, the term “overexpression” defines the deviation 
between the mean expression value averaged over the set-mem-
bers included in a spot-cluster and the mean expression value 
of genes independent of their over-representation. The gene set 
Z-score (GSZ) merges both gene set overrepresentation and over-
expression approaches.10,30 In particular, the GSZ-score for all the 
genes studied is given by,10

     (8)

The denominator defines the respective standard error. The 
GSZ-score defined by Equation 8 thus estimates the degree of 
significance of concerted changes of the expression of groups of 
genes in a particular sample relative to the mean expression of 
all genes. We use the GSZ-score to profile overexpression of a 
selected gene set.

In addition to GSZ-profiles we generated gene set population 
maps to visualize the distribution of the genes of a selected set in 
the SOM portraits. This population map color codes the num-
ber of genes taken from the set in each of the tiles of the mosaic 
image. It ranges from white (no gene) to maroon (maximum 
number per tile observed for the particular gene set).

Finally we generated gene set over-representation heatmaps 
using an algorithm described previously.10 We merged the top three 
gene sets per spot in a sample. Redundant gene sets were removed 
and represented by their minimum P-value. The resulted non-
redundant global list of gene sets was converted into the HG or 
GSZ enrichment heatmaps by applying either one-way (only gene 
sets) or two-way (gene sets and samples) hierarchical clustering.

Sample similarity analysis
Similarity analysis compares the expression states in SOM 

portraits. It uses meta-genes instead of single genes as the basal 
data, which has the advantage of improving the representative-
ness and resolution of the results.6,31

We applied second-level SOM analysis as proposed by Guo 
et al.9 to visualize the similarity between the individual SOM 
meta-gene expression patterns.

Independent component analysis (ICA)32 was applied to the 
SOM meta-genes using the Rpackage “fastICA.” It distributes 
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the samples in the space spanned by the components of minimum 
mutual statistical dependence. These components point along the 
directions of maximum information content in the data which 
is estimated by their deviation from a (non-informative) normal 
distribution.33 ICA was based on covariance matrix calculated in 
terms of Pearson correlation coefficients between all meta-genes 
from any two samples. The correlation matrix was visualized 
using pairwise correlation maps (PCM), minimum spanning tree 
(MST) and correlation cluster net (CN)representations.

MST”s have been shown to be useful for clustering and clas-
sification of cancer subtypes using microarray data.34 For the 
MST calculation we use the spantree function of the R pack-
age “igraph.” A major disadvantage of this method is the lack 
of ancestral states (inner nodes) in an MST, as opposed to phy-
logenetic trees where subtypes are leaves in the tree and other 
nodes are created as ancestral states. On the other hand, MST 
rigorously converts the multi-dimensional clustering problem to 
a tree partitioning problem which simplifies the interrelationship 
between the data without essential loss of information.35

CN constructs an unweighted graph by connecting the nodes 
(samples) whose pairwise correlation coefficient exceeds a given 
threshold (0.5 here). This graph supplements the sparse MST 
with a more detailed and network-like overview about the sample 
correlation structure. It implies more connections than MST and 
thus considers also weaker mutual correlations.

Finally, we also applied the neighbor-joining algorithm 
(Rpackage “ape”) to represent similarity relations based on the 
Euclidean distances between the samples in terms of similarity 
trees.36 The distances between pairs of samples in the tree are 
in scale. In contrast to MST-representation the phylogenetic 

tree allows to identify “bush-like” clusters of similar clusters 
and to estimate the degree of mutual dissimilarity between 
them.

Program
Each cancer data set was analyzed in a separate training run. 

We used our R program “oposSOM” for SOM training and down-
stream analysis.6 It is available as R package on CRAN repository 
(http://cran.r-project.org/). Complete reports of our analyses are 
available on our website (http://som.izbi.uni-leipzig.de).
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1 Materials and Methods 

1.1 Hook quality control and preprocessing of microarray intensities 
Quality control and calibration of microarray data account for detection and correction of technical variation. Our 
hook approach generates chip-specific metrics using the raw intensity data of each particular GeneChip inde-
pendently 1-3. It generates a series of chip characteristics suited for quality control and the assessment of the global 
expression degree.  
In short, the hook method applies to microarrays of the GeneChip-type containing pairs of perfect match (PM) and 
mismatch (MM) probes. It independently analyzes the intensity data of each GeneChip microarray using the two-
species Langmuir hybridization isotherm which assumes competitive binding of specific and ‘representative’ non-
specific transcripts to each probe. The method processes the PM and MM probe intensities (IPM and IMM, respec-
tively) using the transformation, 1

2log log log logPM MM PM MM

set
I I and I I∆ = − Σ = + , where <…>set 

denotes averaging over each probe set of usually 11 PM/MM probe pairs addressing one transcript. Smoothing of 
the delta-versus-sigma plot provides the hook curve which enables decomposition of the probe signals into contri-
butions due to specific and non-specific hybridization by simple graphical analysis and subsequent correction of the 
intensities for sequence specific effects using the positional-dependent nearest neighbour model as standard 4-6. The 
corrected signals are re-plotted into delta-versus-sigma coordinates and again smoothed to obtain the corrected ver-
sion of the hook curve. The curve divides into five hybridization regimes: non-specific (N), mixed, specific (S), 
partial (sat) and complete (as) saturation (left part of Figure S 1). 
Analysis of the hook curve in terms of the two-species Langmuir binding model provides the two parameter cou-
ples (Σstart= log N, ∆start) and (β= log M – log N, α) characterize the position and the geometrical dimensions of the 
hook curve in terms of the coordinates of their starting point and their width and height, respectively (Figure S 1, 
upper part). They are related to well-defined hybridization characteristics of the selected chip, namely the back-
ground intensity level due to non-specific hybridization (‘start’ coordinates), the saturation level of the probes (end 
coordinates), the non-specific background in dimensionless units of the logged binding strength (width) and the 
difference of the logged binding strengths between the PM and MM probes (height). These parameters change in a 
characteristic fashion owing to different effects which implies theirs application in quality control tasks of large 
scale microarray studies. Particularly, the horizontal shift of the whole hook curve reflects alterations of the intensi-
ty scaling of the measurements, e.g. after changes of the scanner settings as schematically illustrated in Figure S 1a. 
The widening of the curve after the left-shift of its increasing branch can be attributed to dilution effects, e.g. if one 
reduces the amount of RNA used for hybridization (Figure S 1b, see ref. 7 for details). The change of the vertical 
dimension of the hook curve typically reflects either alterations of the MM-design or alterations of the washing 
efficiency (Figure S 1c and d, see ref. 8 for details). In addition, the hook method estimates the percentage of absent 
probes (%N) showing intensities below the detection threshold of a particular hybridization (log N, see ref. 2) and 
the hybridization dependent degradation index which inversely scales with the RNA quality in terms of the mean 
transcript length (see 2, 9). 
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Figure S 1: Schematic illustration of the hook dimensions and their modifications due to typical experimental effects: The hook 
curve is defined by its height (α), width (β), and ‘start- and end-coordinates’ (part above). The bottom part illustrates the effects 
of a) optical scaling of the intensity owing to changes of the scanner settings or the labeling which equally shift the start AND 
end points in horizontal direction; b) alterations of the non-specific background level owing to changes of the amount of RNA 
and/or of its composition which shift ONLY the start point in horizontal direction giving rise to the narrowing of the hook for 
larger background contributions; c) modifications of the mismatch design change the vertical dimensions of the hook, e.g. a 
smaller PM/MM gain decreases its height; and d) alterations of the washing efficiency mainly affect the height and width of the 
hook curve. The  panels below compare pairs of hook curves taken from different batches of the GBM-series referring to the 
effects schematically illustrated in panels a) – d), respectively. The thick curves are experimental data and the thin curves are 
theoretical hook curves calculated according to the competitive Langmuir binding model 1. 

 
We applied hook calibration to the whole GBM data set of more than 500 cel files downloaded from the ‘The Can-
cer Genome Atlas’ (TCGA) data portal (http://tcga-data.nci.nih.gov/tcga/). The series divides into 16 distinct 
groups of sample identifiers which refer to different batches. Figure S 2 depicts the hook parameters of all samples 
studied. Batch effects become evident by stepwise changes of the parameter values between the batches. 
Comparison with the characteristic alterations of the hook curves illustrated in Figure S 1 allows interpreting the 
observed hook parameters: For example, batches 5 and 6 differ by start and end points of the hook, log N and log 
M, respectively, whereas the dimensions of the hook (height and width) remain virtually unaffected. This situation 
refers to the shift of the whole hook curve illustrated in Figure S 1a. Comparison with Figure S 1d showing exam-
ples from the two batches 5 and 6 confirm this expectation. Hence, the two batches discussed presumably differ in 
the scanner settings used, where batch 6 is measured using a lower intensity level. 
Another comparison of batches 10 and 15 reveals, that the former one is slightly diluted compared with the latter 
one as indicated by the decreased width of batch 15 (compare also Figure S 1b). Batches 6 and 7, on the other hand, 
differ solely by the heights of their hook curves (compare also Figure S 1c). The percentage of absent probes shows 

http://tcga-data.nci.nih.gov/tcga/
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only weak batch effects. It fluctuates however strongly in selected batches (e.g., batch 2). The degradation parame-
ter indicates poor RNA-quality of batches 7, 12 and 13. 
To judge the batch effect on the expression values obtained after hook calibration we defined stratified the genes 
into 10 groups with increasing expression level. Figure S 3a shows the logged mean values averaged over each 
group as a function of the sample index. Especially the alteration of the scanner settings between batches 5 and 6 
systematically changes the expression levels especially for larger expression values. This bias remains largely un-
corrected by the hook calibration applied. We therefore used quantile normalization in the next step which largely 
removes the bias from the data (Figure S 3b). Note that our approach normalizes expression data in contrast to 
standard normalization methods such as vsn and RMA which normalize raw probe intensities which might be prob-
lematic due to the up-down effect 7. 
 

 
Figure S 2: Hook analysis of the GBM-series: The figure shows the hook parameters (from top to bottom) alpha (height), beta 
(width), log M (mean logged saturation intensity), log N (mean logged intensity of the non-specific background), %N (percent-
age of absent probes) and the degradation index for each of the more than 500 samples of the series. The data set divides into 
16 batches (see vertical lines). Typically the hook-parameters stepwisely change between the batches.  
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Figure S 3: Stratification of expression values into 10 groups of genes differing in their expression values. The figure shows the 
log-mean averaged over all genes of each group in all samples studied before (panel a) and after quantile normalization of the 
expression values (panel b). 

 
Figure S 4a shows the distributions of the expression values before and after quantile normalization. Each of these 
distributions are characterized by a bimodal shape: It’s left peak at smaller expression can be attributed to ‘absent’ 
and thus to virtually inactive genes whereas its right peak values refers to ‘present’ and thus to active genes 10, 11. 
The ‘absent-peak’ due to non-specific hybridization is non-informative with respect to the target genes because 
their expression is smaller than the detection threshold of the method. The logged expression values of absent genes 
are therefore arbitrarily set to zero. Expression values of genes in the overlap region of both peaks are scaled with a 
factor 0<pc<1 which estimates the relative contribution of specific hybridization. Expression values of present 
genes are used without further scaling. In the last step the logged expression values of each gene are centered with 
respect to the mean value averaged over all samples considered in the series of samples. A relative log-expression 
value of zero consequently means that the gene is expressed according to its mean expression value and positive 
and negative values refer to over and under-expression, respectively.  
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Figure S 4: Normalization and adjustment of expression values: The distributions of hook-calibrated expression values of the 
samples studied merge into one representative mean distribution after quantile normalization (panel a). Its double peaked shape 
is decomposed into two single peaked distributions due to non-specific and specific hybridization at small and larger expres-
sion values, respectively (b). The fraction of the specific signal contributing to the total signal density (`present call`, dashed 
curve) is used as weighting coefficient of the logged expression values, which narrows the left peak of the total signal density 
(c). Finally, the expression values are normalized with respect to the logged mean expression of each gene (d). The intense cen-
tral peak refers to invariant genes under all conditions studied. 
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1.2 Error characteristics of cancer subtypes 
The standard error of the expression of each gene was estimated using a modified locally pooled error (LPE) ap-
proach 12: All gene-specific expression values of one subtype are treated as pseudo-replicates which provide the 
standard deviation for each gene for each subtype. These data are then plotted as a function of their logged expres-
sion value and smoothed using a sliding window of appropriate width (Figure S 5). The obtained LPE-function de-
cays with increasing expression. A combination of the LPE-value and of the individual standard deviation of each 
gene are used to estimate differential expression using a regularized t-score 12. 
The mean over the LPE-function provides the average standard deviation of each cancer subtype. Figure S 5 shows 
that the error level slightly varies between the subtypes being minimal in normal brain samples and being maximal 
in PN-GBM samples. 
 

 
 
Figure S 5: Error characteristics of GBM subtypes: The figures show error distributions (dots) and locally pooled estimates 
(green curves) of GBM-subtypes as a function of the logged expression, e. The LPE-curves are calculated as moving average 
over 500 single probe values. The bottom-right box plot depicts the mean errors for each subtype. 
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1.3 Supporting maps: Population, variance and distance maps 
The population, variance and distance (U-matrix) maps shown in Figure S 6 provide information about the number 
of single genes per metagene minicluster, about the variability of the metagene profiles and about their mutual Eu-
clidian distances using appropriate color coding. SOM-machine learning scales the difference between the expres-
sion profiles of adjacent metagenes inversely to their population, i.e., adjacent metagene profiles become more sim-
ilar for highly populated metagenes. This way the method tends to distribute the single genes over as much as pos-
sible tiles. The population map reveals that the single genes inhomogeneously distribute among the tiles of the mo-
saic. Highly populated metagenes (see yellow and red tiles) predominantly group along the edges of the map 
whereas only a few highly populated tiles are found in its central area. A zone of ‘empty’ metagenes not containing 
real genes (G/M=0, see dark blue tiles) clusters around the highly populated central area of the map. The tiles of 
maximum population in the central area refer to genes with virtually invariant, mostly absent specific expression in 
all samples studied. These invariant genes give rise to the dark blue spot in the central area of the variance map. 
The variance map also reveals that other nearly invariant metagenes cluster around this tile in the central area of the 
map (see blue and green areas). Both, invariant and empty metagenes carry essentially no specific information as 
classification markers in transcriptional profiling. Hence, the tiles occupied by empty and invariant genes form re-
gions not suited for differential expression analysis between the cancer subtypes studied.  
The more variant and higher populated metagenes reveal an underlying spot like pattern preferentially along the 
boundaries of the map (red areas), which agrees with the over- and underexpression spots detected in the SOM mo-
saics of individual samples. The distance map color codes the distances between adjacent metagenes 13. Dark color-
ing corresponds to a large distance and thus a gap between the features whereas a light coloring signifies that the 
metagene profiles are close to each other. Light areas thus can be thought as clusters and dark areas as cluster sepa-
rators. 

 
Figure S 6: Supporting maps characterizing the SOM trained for each cancer set: The population map visualizes the number of 
single genes per metagene. Highly populated metagenes accumulate along the edges and partly also in the centre of the maps 
(red tiles). The metagene variance map color codes the variance of the metagene profiles. Virtually invariant metagene profiles 
form the central blue spot whereas highly variant ones are found in the peripheral regions of the map. The U-matrix color-
codes the distances between neighboring metagene profiles: Dark regions refer to larger and light to closer distances.  
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1.4 Alternative methods of module selection 
Expression modules are selected using the percentile over- and underexpression criteria as standard. Alternative 
criteria are mutual correlations between the metagenes using a seed algorithm or distance based K-means clustering 
14. Each method selects clusters of specific areas and sizes in the map (see Figure S 7) which, in turn, can be adjust-
ed by appropriate thresholds separating the clusters. The mapping of the obtained clusters into the SOM images 
provides an intuitive view on the consequences of different clustering algorithms. For example, correlation cluster-
ing arranges the clusters roughly in form of three annuluses (blue, green, red) referring to decreasing values of the 
correlation coefficients for mutual correlations of the metagegenes in the cluster. The respective K-means clusters 
and overexpression spots mostly correspond to the outer annulus, however the different similarity metrics produce 
different shapes of the clusters (see below). 
 

 
 
Figure S 7: Alternatively to spot selection based on differential over- and underexpression one can apply K-means clustering or 
correlation clustering based on Euclidian distances or Pearsons correlation coefficients between the metagenes (upper row of 
figures). As an additional method we applied Dynamic Tree Cut (which also includes alternative tree-cut methods) and map the 
obtained clusters into the SOM image (row below). Vice versa, the overexpresssion spots are visualized as color bar (each color 
refers to one overexpression spot) in the Dynamic Tree Cut algorithm. 

 
As an additional option we applied ‘Dynamic Tree Cut’, a hierarchical clustering algorithm based on correlation 
metrics with dynamic branch cutting 15, to the metagenes and mapped the obtained clusters into the SOM (Figure S 
7). The report produced by the program ‘Dynamic Tree Cut’ assigns clusters obtained by different cutting algo-
rithms as color bars below the clustering tree (Figure S 7). We add a bar that visualizes the overexpression spots in 
this presentation. It shows that the overexpression spots refer to disjunct outer branches of the tree. The projection 
of the Dynamic Tree Cut-clusters into the SOM mosaic reveals similarities of the cluster patterns with our correla-
tion seed algorithm which reflect the common correlation metric used in both cases. Note that these correlation 
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clusters tend to extend in radial direction whereas the overexpression spot clusters extend often along the borders of 
the map. K-means clusters partly more resemble the overexpression spots but they occupy more extended areas 
mainly due to the particular threshold. The different cluster selection algorithms thus provide different options of 
expression module selection. We applied the intuitive and easy-to-interpret differential expression criterion for 
module selection as standard. It selects relatively small and localized expression modules. On the other hand, wider 
areas of metagenes are not included into the clusters. The impact of the alternative methods on the functional inter-
pretation will be addressed elsewhere. 
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1.5 The effect of alternative preprocessing methods on downstream analysis: hook versus RMA 
We compared the effect of preprocessing on downstream analysis results after SOM training. Particularly, we used 
either our hook calibrated and quantile normalized expression data or RMA-preprocessed data which are down-
loaded from the TCGA-website (level 2 data) of the same sample set. Figure S 8 shows correlation net (CN) simi-
larity plots and the SOM portraits of selected samples. 
The CN of both data sets strongly agree showing only small differences in the overall similarity patterns of sub-
types. A few samples shift their position slightly, e.g. sample no. 321 (Figure S 8). The spot patterns of the individ-
ual portraits differ but they show essentially the same trends, e.g. of global underxpression in sample no. 156 and 
the appearance of more than two spots in sample no. 084. Global spot analysis shows that hook calibration provides 
a slightly more diverse pattern of differential expression (Figure S 9) and a slightly larger number of distinct spots 
(data not shown). 
Figure S 10 directly compares the spots patterns seen by both methods in terms of the overexpression summary 
maps. Hook and RMA data produce very similar patterns which strong correspondence between hook- and RMA-
spots in terms of their localization and ordering in the map (compare their ordering in clockwise direction along the 
border of the map) and also in terms of size and of the number of metagenes and single genes included in the spots. 
The hook-map in total detects a few more spots (e.g., spot J).  
In the next step we compare spot lists (of genes in the particular spots clusters; Figure S 11) and total lists (of all 
genes studied; Figure S 12) in selected samples overexpressing the respective spots. The ranked lists are generated 
using three scores (see 12 for details): the fold change (FC) considers only the differential expression of the genes; 
the regularized t-score also takes into account the error of differential expression; and the WAD score is similar to 
FC but it more heavily weights large expression values. The rank comparisons plots in Figure S 11 clearly shows 
that the regularized t-score produces better agreement between hook and RMA spot lists presumably because it ex-
plicitly considers the error which removes less significant genes from the top of the list. FC and WAD lists are vir-
tually identical (data not shown). Nevertheless, also t-scored hook and RMA lists mostly rank genes in different 
orders.  
Comparison of the total lists using the correspondence at the top (CAT) plots in Figure S 12 shows that at the top-
50 of the lists FC and WAD rankings better agree between the methods presumably because these genes refer to 
large expression values and thus to reliable data. At ranks larger than 50 the lists agree mostly to 60% - 80% of the 
genes considered. 
Finally we compared the functional context of the spots as seen by hook and RMA by applying gene set enrichment 
analysis of gene sets of the category biological process (BP, see Table S 1). Especially ‘leading’ spots collecting 
strongly overexpressed genes largely agree in the sets enriched (e.g. spot K, and partly E, F and D). Note that espe-
cially these spots govern the classification of the samples into different subtypes. Other spots agree to a less degree 
in their functional context (e.g. spots A and G). Note that spots A and G are related to one of the subtypes (NL) of 
GBM and thus they are important to interpret its functional context. A third group of spots partly found in the cen-
tral area of the map diverge in the gene sets detected. 
In summary, the choice of the preprocessing method seems to have only a small effect on the most prominent prop-
erties of the expression landscape which govern the similarities between the samples (and thus their classification 
into different subtypes) and the functional context of the leading expression modules. On the other hand, gene lists 
partly differ especially for genes differentially expressed at intermediate and lower levels. The significance and im-
pact of such differences can not been judged here and must be addressed separately. 
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Figure S 8: The effect of preprocessing using either RMA or hook methods on downstream similarity analysis using correlation 
nets and SOM portraits of selected samples (the position of the samples in the net are indicated by their ID’s). 

 

 
Figure S 9: Fraction of metagenes in the overexpression spots after RMA and hook preprocessing.  
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Figure S 10: Spot comparisons as seen by hook and RMA: Overexpression summary maps (small images in the part above) 
and selected spots (below) are labeled by capital letters spots and blue circles for twin-spots with similar functional context and 
red circles for spots without clear correspondence. The numbers give the ratio of metagenes/genes in the respective spots. Note 
that both spot patterns are very similar showing virtually the same spot order along the border of the map (spots A and G ex-
change their order and spot J is additionally detected by hook). Most of the corresponding spots also agree in their size and the 
number of metagenes/single genes. 
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Figure S 11: Comparison of selected top-50 spot lists of genes obtained by hook and RMA using the regularized t-score or the 
FC-score in terms of  rank comparison (RC) plots. The letters assign the spots (see Figure S 10). Each gene in each top-50 
hook-list  is represented by a small circle colored green if it is also found in the respective top-50 RMA-list. Such overlap 
genes are connected by green/blue/red lines if the rank difference is small/intermediate/large. Non-overlap genes are indicated 
by red circles. Hence, the more lines connect both lists the more similar they are. Green lines overweight blue ones and blue 
ones overweight red ones. Each comparison refers to one selected sample strongly expressing the respective spot. 
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Figure S 12: Comparison of selected total list of genes obtained by hook and RMA using the regularized t-score, the WAD-
score or the FC-score. Lists are compared using the correspondence-at-the-top (CAT) plots showing the fraction of overlap 
genes in pairs of lists as a function of the gene rank. The letters refer to samples which are chosen for spot comparisons in Fig-
ure S 11.  
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Table S 1: Comparison of spot enrichment as seen by hook and RMA 

 
Spotsa Hook RMA 

#M/#Gb top 5 gene sets (BP)c #M/#Gb top 5 gene sets (BP)c 
A 4/239 protein transport (-9), 

stress−activated  MAPK cascade (-9), 
GTP catabolic process (-8), 
small GTPase mediated signal transduction 
(-8), 
toll−like receptor 3 signaling pathway (-8), 
intracellular protein transport (-5) 

4/253 RNA splicing (-7), 
regulation of protein localization (-6), 
intracellular protein transport (-6), 
GTP catabolic process (-5), 
protein destabilization (-5), 
small GTPase mediated signal (-4) 

G 6/260 regulation of G−protein coupled receptor 
protein signaling pathway (-7), 
negative regulation of cell death (-6), 
cell adhesion (-6), 
cell fate commitment (-5), 
negative regulation of neuron differentia-
tion (-5) 

9/408 negative regulation of neuron differentia-
tion (-6), 
cell adhesion (-6), 
ion transport (-5), 
transmembrane transport (-5), 
negative regulation of cell death (-4) 
 

C 7/336 RNA splicing (-5), 
G2/M transition of mitotic cell cycle (-4), 
DNA recombination (-4), 
mRNA processing (-4), 
nuclear mRNA splicing, via spliceosome 
(-4), 
RNA processing (-3) 

5/296 RNA splicing (-9), 
nuclear mRNA splicing, via spliceosome 
(-7), 
RNA processing (-7), 
transcription elongation from RNA polymer-
ase I promoter (-6), 
mRNA processing (-6), 
G2/M transition of mitotic cell cycle (-3) 

D 34/104
3 

cell adhesion (-16), 
immune response (-16), 
inflammatory response (-16), 
chemotaxis (-16), 
signal transduction (-13) 

38/1151 cytokine−mediated signaling pathway (-16), 
immune response (-16), 
inflammatory response (-16), 
type I interferon−mediated signaling pathway 
(-15), 
cell adhesion (-14), 
signal transduction (-11) 

E 15/673 cell division (-16), 
M phase of mitotic cell cycle (-16), 
mitotic cell cycle (-16), 
mitosis (-16), 
mitotic prometaphase (-16), 
DNA replication (-12) 

9/405 M phase of mitotic cell cycle (-16), 
cell division (-16), 
mitotic cell cycle (-16), 
mitotic prometaphase (-16), 
DNA replication (-12), 
mitosis (-12) 

F 2/102 anterior/posterior pattern formation (-14), 
proximal/distal pattern (-11), 
formation(-5), 
 
embryonic skeletal system morphogenesis (-
7), 
embryonic limb morphogenesis  
(-7), 
regulation of transcription, 
DNA−dependent (-7) 

3/210 anterior/posterior pattern formation (-10), 
M phase of mitotic cell cycle (-10), 
proximal/distal pattern formation  
(-10), 
mitotic prometaphase (-10), 
regulation of transcription, 
DNA−dependent (-9), 
embryonic skeletal system morphogenesis (-
4) 

J 4/221 water transport (-7), 
neurotransmitter secretion (-6) 
axonogenesis (-5) 

  

K 1/183 synaptic transmission (-12), 
neurotransmitter secretion (-8), 
central nervous system development (-6), 
myelination (-6), 
glutamate secretion (-6) 

1/176 synaptic transmission (-13), 
neurotransmitter secretion (-8), 
central nervous system development (-6), 
myelination (-6), 
glutamate secretion (-6) 
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H 7/256 associative learning (-5), 
negative regulation of gene−specific tran-
scription from RNA polymerase II promoter (-
5), 
regulation of transcription from RNA poly-
merase II promoter by nuclear hormone (-5), 
steroid hormone mediated signaling path-
way (-4), 
regulation of transcription, DNA−dependen 
(-4) 

8/263 embryonic forelimb morphogenesis (-5), 
calcium−independent cell−cell adhesion (-4), 
induction of positive chemotaxis (-4), 
acute−phase response (-4), 
nucleosome assembly (-4) 

I  response to light stimulus (-4), 
muscle contraction (-3), 
androgen metabolic process (-3) 

  

M 3/113 regulation of transcription, DNA−dependent 
(-5), 
cellular response to lithium ion (-5), 
positive regulation of transcription from RNA 
polymerase II promoter  (-5) 

  

 
a for spot assignments see Figure S 10 
b number of metagenes/number of genes ratio of the respective spot 
c top-five enriched gene sets of each spot taken from the category biological process (BP); overlap sets are shown in 

bold letters; italic letters indicate highly ranked non-overlap sets among the top-five.  
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2 Results 

2.1 Pairwise correlation maps  
We generated pairwise correlation maps (PCM) which visualize the Pearson correlation coefficients between the 
metagene expression landscapes in all pairwise combinations of sample portraits. Maroon and red colored tiles as-
sign strong correlations and thus pairwise combinations of similar portraits and blue colored tile anticorrelated por-
traits where usually overexpressed regions have switched into underexpressed ones. The samples of the same tumor 
subtype are grouped together to visualize the intra- and inter-class similarity of the samples (see color bars along 
the edges of the map). The covariance structure of the data is visualized using the maximum spanning tree (MST) 
and the correlation net (CN) representations shown in the main paper. 
The PCM of GBM for example clearly shows that the expression landscapes of the MES and PN subtypes are 
strongly anticorrelated whereas that of MES and CL are partly correlated. Anticorrelated portraits are also observed 
for MET and BHP on one hand and PIN and PCA on the other hand for PCP. 

 
Figure S 13: Pairwise correlation maps visualizing the Pearsson correlation coefficient of all pairwise combinations of sample 
portraits. The samples are grouped according to their class membership (see the color bars along the edges of the map). Each 
subtype is characterized by a more or less pronounced brown-to-red square along the diagonal line which reflects self-
similarity of samples of the same type. Off-diagonal brown and blue regions refer to correlated and anti-correlated SOM-spot 
pattern. For example, GBM-MES samples are predominantly anticorrelated with GBM-PN samples but partly correlated with 
GBM-CL and GBM-NL samples (see also the respective anticorrelated or correlated spot pattern of the mean portraits per 
class). 
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2.2 Underexpression spot characteristics 
We analyzed the underexpression spots visualized as blue regions expression in the SOM-portraits using the same 
characteristics which were applied to the overexpression spots. Figure S 14 - Figure S 15 show the underexpression 
spot characteristics of GBM and PCP, respectively, using the underexpression summary map, the spot expression 
heatmap and the spot abundance plot. The respective overexpression characteristics are given in the main paper. 
Position and size of most of the detected underexpression spots agree with the position and size of one of the over-
expression spots. We use the respective lower case letters for assignment of the underexpression spots to express 
this pairwise correspondence, e.g. underexpression spot ‘a’ roughly corresponds to overexpression spot ‘A’. The 
detection of an over- and underexpression spot at the same position in the SOM-portraits of different samples simp-
ly reflects marked oscillations of the expression amplitude of the respective metagenes: for example, spot K is 
overexpressed in PN- and spot k, at nearly the same position, is underexpressed in MES-samples. In some cases an 
overexpression spot splits into two or three underexpression spots or vice versa due to subtle differences of the lo-
cal expression patterns affecting spot selection. We use the annotations Nn1, n2,.. and F+C(fc), respectively. 
 

 
Figure S 14: Underexpression spot characteristics of GBM. Underexpression spots represent regions below the 2-percentile 
threshold of expression values. The spots are assigned by lower case letters. We use the same letter as used for assigning the 
overexpression spots (e.g. underexpression spot ‘a’ is located in the same region of the map as overexpression spot ‘A’). If the 
region of one of these overexpression spots splits into two or more underexpression spots a number was added to the letter (e.g. 
d1, d2). In the opposite situation, i.e., if more than one overexpression spots merge into one underexpression spot we merge the 
respective letters (e.g. spots E, K and J merge into underexpression spot ‘ekj’. 
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Figure S 15: Underexpression spot characteristics of PCP. See legend Figure S 14 for details. The arrow illustrates the appear-
ance of spots with progressing cancer. 

 
 
  



21 
 

2.3 Spot correlations 
To explore similarity relations between the spot patterns of the samples we calculate the ‘spot expression matrix’. 
In this matrix, the spot expression state of each sample is characterized by one column containing the mean logged 
expression values of each spot averaged over all metagenes of this spot. Each row then provides the expression pro-
file of one particular spot in all samples. The spot tree is calculated as the respective maximum spanning tree (MST, 
see the main paper) connecting spots of strongest correlation in all pairwise combinations of their spot profiles (i.e. 
the row-vectors of the spot matrix). The spot tree consequently characterizes similarities between the spots in con-
trast to the sample-similarity MST which characterize similarities between the samples. The nodes of the spot-MST 
are complemented with pie charts illustrating the fraction of the sample classes expressing this particular spot. 
We calculated MSTs separately for over- and underexpression spots based on the spot-spot correlation matrix. They 
visualize diagonal clusters of correlated (marroon and red) and off-diagonal anti-correlated spot combinations in 
GBM (Figure S 16) and PCP (Figure S 17). The respective spot MSTs divide into closely located spots along the 
tree showing concerted expression changes and more distant anticorrelated spots. Over- and underexpression spot 
trees reveal partly similar structures reflecting antagonistic swicthing behavior of the associated genes: For 
example, overexpression spots K and F+C are anticorrelated in GBM. The same relation is observed for the 
underexpression spots k and (fc). 
 

 
Figure S 16: Spot correlation analysis of GBM: The part above shows the maximum spanning trees of over- and underexpres-
sion spots. Spots are assigned by the same letters as in the main paper. The spot abundances of the subtypes are illustrated using 
pie diagrams: The radius of the segments scales with the percentage of spots per class. Strong positive correlations between 
spots are illustrated by dotted ellipses including the respective spots. Red dotted lines connect strongly anticorrelated spots. The 
part below shows the respective pairwise correlation maps of the spots. Strong positive and negative correlations are colored in 
maroon/red and dark/light blue, respectively. 
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Figure S 17: Spot correlation analysis of PCP. See legend of Figure S 16.  
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2.4 Global underexpression characteristics  
We analyzed the landscapes in the range of low expression values by calculating the number distribution and the 
shape of the underexpression spots. For PCP the obtained underexpression characteristics are almost symmetric 
showing similar properties compared with the respective overexpression landscapes (see the main paper): For ex-
ample, over- and underexpression spots are both either more (e.g. in the BHP-subtype) or less (e.g. in MET-
samples) compact. Note that the number distribution of underexpression spots is slightly shifted towards smaller 
values due to the, on average, smaller number of underexpression spots observed. 
In contrast, for the GBM-subtypes one finds a partly anti-symmetric behavior of the respective parameters: Where-
as the number distribution of the underexpression spots of the PN-, NL- and CL-subtypes is narrower compared 
with that of the MES- and PN-subtypes the relation reverses for the overexpression spots. The narrow shape of the 
underexpression spots is paralleled by a more compact shape of the spots especially in logFC scale. Hence, the sub-
types with a more fuzzy overexpression landscape seem to show more sharp underexpression patterns. This asym-
metry can be explained by the fact that the metagenes expression distributes differently between over- and under-
expression in the different subtypes. Dominating overexpression is associated with the more compact spots in the 
MES-images whereas dominating underexpression gives rise to more compact underexpression spots in CL- and 
NL-subtypes. 
 

 
 
Figure S 18: Fractional distribution of the numbers of underexpression spots, and the underexpression spot shape in log FC and 
log logFC scales (from the left to the right). 
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2.5 Spot enrichment analysis: Tables of enriched gene sets in GBM and PCP 
The tables below collect enriched gene sets in different spots of the GBM and PCP SOM. Spots are assigned ac-
cording to our overexpression (capital letters) and underexpression (lower case letters) signature. 
 
Table S 2: Top-enriched gene sets in spots detected in GBM 

 
Spota Short name upb downb GO and pathway sets c Tissue and literature sets d 

G wound 
healing MES PN Plasma membrane (CC,-6); wound 

healing (BP,-5); fibronectin binding (-5) 

KOBAYASHI_EGFR_SIGNALING_6HR_DN (LS,-10); 
Wu_Cell-migration (LS,-7); Lee_Mestasis (LS, -7), 
Boyault_Liver-Cancer (LS, -6); Charafe_Breast-
Cancer (LS,-6); cultured_astroglia (CS,-6) 

F Inflam-
mation 

MES, 
NL,CL PN 

Extracellular_space (CC,-18); inflam-
matory response (BP,-16); chemotaxis 
(BP,-15); cytokine_pathway (BP,-14) 

Mucosa (TS,-13); cultured_astroglia (CS,-15); Ver-
haak_MES (GBM,-9); Hummel_BL-DN (LS, -8); 
Farmer_Breast-Cancer (LS,-11) 

E neuro-
transmitter MES  

neurotransmitter:sodium symporter 
activity (MF,-5); neurotransmitter 
transport (BP,-4); acetylcholine recep-
tor activity (BP,-4) 

MILICIC_FAMILIAL_ADENOMATOUS_POLYPOSIS_
UP (LS,-4) 

N Cell divi-
sion PN NOR, NL 

Cell_cycle (BP, 0); cell_division (BP,0); 
mitosis (BP, 0); nucleus (CC, 0) ; 
chromosome (CC,-12); DNA_binding 
(MF,-14);  

Developing_astrocytes (CS,0); Farmer_breast-cancer 
(LS,0); Liang_silenced_by_methylation (LS,0); OPC 
(CS,-6) 

p chromatin PN NL 

Nucleus (CC,-14); nucle-
ic_acid_binding (MF,-13); chroma-
tin_modification (BP,-13); 
DNA_binding (MF,-10); his-
tone_h3_acetylation (BP,-7) 

REACTOME_PECAM1_INTERACTIONS (RE,-5); 
NIKOLSKY_BREAST_CANCER_12Q24_AMPLICON 
(LS,-4); BIOCARTA_PITX2_PATHWAY (BC,-4); Glo-
bus pallidus (TS,-4) 

n1 Cell divi-
sion PN NL 

Chromosome (CC,0); nucleus (CC,0); 
cell_division (BP,-16); mitosis (BP, -
16) 

SEMBA_FHIT_TARGETS_DN (LS,0); 
FINETTI_BREAST_CANCER_KINOME_RED (LS,0); 
LIANG_SILENCED_BY_METHYLATION_DN (LS,0); 
LY_AGING_MIDDLE_DN (LS,0);  developing astro-
cytes (CS,-15) 

n2 RNA splic-
ing PN NOR 

RNA splicing (BP,-7); midbrain devel-
opment (BP,-5); RNA processing (BP,-
5); ribonucleoprotein complex (CC,-5) 

SPIRA_SMOKERS_LUNG_CANCER_DN (LS,-7); 
LIU_COMMON_CANCER_GENES (LS,-4) 

C Angiogene-
sis 

CL, 
MES NOR, NL 

Angiogenesis (BP,-6); blood vessel 
morphogenesis (BP,-7); base-
ment_membrane(CC,-7); extracellu-
lar_matrix_binding (MF, -5) 

Verhaak_CL (GBM,-11); 
TCGA_GLIOBLASTOMA_MUTATED (LS,-6); 
CHEN_HOXA5_TARGETS_6HR_DN (LS,-5); 
LEE_LIVER_CANCER_HEPATOBLAST (LS,-5) 

O Innate im-
munity 

CL,NL, 
PN NL 

Protein_binding (MF,-12); nucleus 
(MF,-12); nucleotide_binding (MF,-10); 
cytosol (CC,-8); HCMV_pathway (BC,-
7); downstream_signal_cascade (RE,-
6); stress_activated_MAPK_cascade 
(BC,-7); Toll signaling pathway (BP-5);  

B-cells (TS,-6); 
DING_LUNG_CANCER_EXPRESSION_BY_COPY_
NUMBER (LS,-5); 
UZONYI_RESPONSE_TO_LEUKOTRIENE_AND_TH
ROMBIN (LS,-5) 

I 
Mitochon-
drion/ 
translation 

NL PN 

Mitochondrion (CC,-14); ribosome 
(CC,-10); translation (BP,-8); 
C−terminal protein lipidation (BP,-6); 
PACKAGING 
_OF_TELOMERE_ENDS (RE,-5) 

OUELLET_CULTURED_OVARIAN_CANCER_INVAS
IVE_VS_LMP_UP (LS; -6); 
BARRIER_CANCER_RELAPSE_TUMOR_SAMPLE_
UP (LS,-5); MOOTHA_TCA (LS,-5) 

J Mitochon-
drion NL  

Mitochondrion (CC,-5); mitochondri-
al_small_ribosome_unit (CC,-5); 
CELL_DEATH_SIGNALLING_VIA_N
RAGE_NRIF_AND_NAD (RE,-4); 
nucleotide metabolic process (BP,-4) 

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_D
N (LS,-4); Verhaak_NL (GBM,-5); 
DODD_NASOPHARYNGEAL_CARCINOMA_UP 
(LS,-4);  

H Cell-cell 
adhesion NL  

heterophilic cell−cell adhesion (BP,-5); 
TIGHT_JUNCTION (KG,-5); extrinsic 
to internal side of plasma membrane 
(CC,-4) 

CROMER_TUMORIGENESIS_DN (LS,-5);  
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B xenobiotics NL  

RETINOL_METABOLISM (KG,-5); 
CARM1_PATHWAY (BC,-5); 
XENOBIOTICS (RE,-5); positive regu-
lation of stress fiber assembly (BP,-5); 
promoter binding (MF,-5); 
DRUG_METABOLISM_OTHER_ENZ
YMES (KG,-5); transcription factor 
complex (CC,-4) 

BEGUM_TARGETS_OF_PAX3_FOXO1_FUSION_D
N (LS,-5) 

A response to 
axon injury NL, CL  

Cilium_axoneme (CC,-7); nega-
tive_regulation_of _cell_death (BP,-6); 
response_to_axon_injury (-6,BP); 
fibroblast growth factor receptor signal-
ing pathway (BP,-5) 

Astrocytes_glio (CS,-16); Lu_aging_brain-DN (LS, -8);  

L Transcripti-
on NL  

DNA_dependent_transcription (BP,-5); 
sequence−specific enhancer binding 
RNA polymerase II transcription factor 
(MF,-5);  

NIKOLSKY_BREAST_CANCER_21Q22_AMPLICON 
(LS,-5); Turjanski_Mapk8+9_targets (LS,-4) 

M develop-
ment NL  

pancreas development (BP,-5); skin 
development (BP,-5); androgen meta-
bolic process (BP,-5);  

 

l Transcripti-
on NL  DNA_dependent_transcription (BP,-5) Turjanski_Mapk8+9_targets (LS,-4) 

K synapse NOR, 
PN NL, MES 

Synaptic_transmission (BP,-16); syn-
apse (CC,-12); nerv-
ous_system_development (BP,-11); 
Glutamate (RE, -7); Seroto-
nin_Neurotransmitter (RE,-6); Dopa-
min_Neurotransmitter (RE,-6) 

Azgharzadeh_Neuroblastoma (LS,-7); Nakaya-
ma_soft-tissue-tumor (LS,-6); Nervous_system (TS,-
6); in_vivo_astrocytes (CS,-8); neurons_glio (CS,-6) 

 
a sets are assigned using the letter-nomenclature introduced in the main paper 
b each spots is shortly named according to a biological context derived from the enriched gene sets 
c Cancer subtypes showing up- or downregulation of the respective spot.  
d Top enriched gene sets from the categories biological process (BP), molecular function (MF), cellular component 

(CC), Reactome (RE), BioCarta (BC), KEGG (KG). Enrichment is estimated using the p-value of the right-tail Fish-
ers exact test based on the hypergeometrical distribution. The table lists the name of the gene set and the set category 
and the log p-value in the brackets. 

e Top enriched genesets from the categories ‘literature sets’ (LS), cell systems (CS), tissue sets (TS) 
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Table S 3: Top-enriched genesets in spots detected in PCP (see legend of Table S 2 for assignments) 

 
Spota Short name upb downb GO and pathway sets c Tissue and disease sets d 

C antigen 
processing BHP MET 

antigen processing and presentation 
(BP,-9), response to progesterone stimu-
lus (BP,-7); cytokine−mediated signaling 
pathway (BP,-7); extracellular region 
(CC,-10); insulin−like growth factor bind-
ing (MF,-6); integrin binding (MF,-5); 
MHC class II protein complex (CC,-5); 
SMOOTH_MUSCLE_CONTRACTION 
(RE,-7) 

CASORELLI_ACUTE_PROMYELOCYTIC_LEUKEMI
A_UP (LS,-6); cultured astroglia vs. in vivo astrocytes 
(CS,-4); Sec. lymphoid organs (TS,-4); 
HUMMEL_BURKITTS_LYMPHOMA_DN (LS, -5); 

G prolifera-
tion 

BHP, 
MET  negative regulation of epithelial cell pro-

liferation (BP,-4)  FIRESTEIN_PROLIFERATION (LS,-4);  

M chromatin 
remodeling PIN BHP, 

MET 

chromatin assembly or disassembly 
(BP,-4); chromatin remodeling (BP,-4); 
mRNA transport (BP,-3); condensed 
nuclear chromosome (CC,-4); nuclear 
inner membrane (CC,-4); 

ZHAN_V1_LATE_DIFFERENTIATION_GENES_DN 
(LS,-5); 
LINDGREN_BLADDER_CANCER_CLUSTER_2A_D
N (LS,-5); BARIS_THYROID_CANCER_DN (LS,-5); 
SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_U
P (LS,-4) 

N ribosome 
PIN, 
PCA_l
ow 

MET 

structural constituent of ribosome (MF,-
5), endoplasmic reticulum (CC,-5); cellu-
lar protein metabolic process (BP,-8); 
translational termination (BP,-6); 
post−translational protein modification 
(BP,-5); SIGNALING_BY_EGFR (RE,-4)  

TOMLINS_METASTASIS_DN (LS,-6); 
TOMLINS_PROSTATE_CANCER_UP (LS,-4); 
DAVICIONI_RHABDOMYOSARCOMA_PAX_FOXO1
_FUSION_UP (LS,-5); 
AMIT_EGF_RESPONSE_60_MCF10A (LS,-4); an-
drogen signaling (LS,-9) 

L cell adhe-
sion 

PCA_l
ow  

homophilic cell adhesion (BP,-4); re-
sponse to insulin stimulus (BP,-3); visual 
learning (BP,-3); caveola (CC,-3); actin 
filament (CC,-3); 

OKAWA_NEUROBLASTOMA_1P36_31_DELETION 
(LS,-16); 
WHITE_NEUROBLASTOMA_WITH_1P36.3_DELETI
ON (LS,-5); 
SPIELMAN_LYMPHOBLAST_EUROPEAN_VS_ASIA
N_2FC_UP (LS,-4); Muscle (TS,-4); 
CHUNG_BLISTER_CYTOTOXICITY_DN  (LS,-4) 

A  PCA_
high  

intracellular protein kinase cascade (BP,-
3); negative regulation of cell cycle (BP,-
3); induction of apoptosis by extracellular 
signals (BP,-3); hydrolase activity, acting 
on ester bonds (MF,-3); insulin−like 
growth factor binding (MF,-3) 

YE_METASTATIC_LIVER_CANCER (LS,-5); 
SMID_BREAST_CANCER_RELAPSE_IN_LIVER_DN 
(LS,-5); EHLERS_ANEUPLOIDY_DN (LS,-5); 
HUMMEL_BURKITTS_LYMPHOMA_DN (LS,-4); myc 
(LS,-4);  

O cell cycle PCA_
high 

PCA_l
ow, 
MET 

CELL_CYCLE (KG,-7); protein targeting 
(BP,-5); transcription elongation from 
RNA polymerase II promoter (BP,-4); 
endoplasmic reticulum unfolded protein 
response (BP,-4); general RNA polymer-
ase II transcription factor activity (MF,-6); 
PDZ domain binding (MF,-5) 

REACTOME_TRANSMEMBRANE_TRANSPORT_O
F_SMALL_MOLECULES (RE,-16); 
MYLLYKANGAS_AMPLIFICATION_HOT_SPOT_16 
(LS,-8); HSIAO_HOUSEKEEPING_GENES (LS,-7); 
LEE_LIVER_CANCER_SURVIVAL_DN (LS,-7) 

F platelet 
activation 

MET, 
PCA_
high 

BHP, 
PIN 

platelet activation (BP,-6), extracellular 
matrix (CC,-8); extracellular matrix struc-
tural constituent (MF,-7); blood vessel 
remodeling (BP,-5); calcium ion binding 
(MF,-6); 
INTEGRIN_CELL_SURFACE_INTERAC
TIONS ((RE, -7) 

LEE_NEURAL_CREST_STEM_CELL_UP (LS,-5); 
FARMER_BREAST_CANCER_CLUSTER_5 (LS,-5) 

H RNAP II 
activity 

MET, 
BHP PIN 

cholesterol homeostasis (BP,-4); specific 
RNA polymerase II transcription factor 
activity (MF,-5); 
HISTIDINE_METABOLISM (KG,-5) 

MISHRA_CARCINOMA_ASSOCIATED_FIBROBLAS
T_UP (LS,-5); 
MULLIGHAN_MLL_SIGNATURE_1_DN (LS,-4) 

B nucleo-
some MET  nucleosome assembly (BP,-5); nucleo-

some (CC,-7) 

PENG_GLUTAMINE_DEPRIVATION_UP (LS,-16); 
BIOCARTA_NO2IL12_PATHWAY (BC,-16); 
GRAHAM_CML_DIVIDING_VS_NORMAL_DIVIDING
_UP (LS,-7); GNATENKO_PLATELET_SIGNATURE 
(LS,-7) 

D develop-
ment MET  post−embryonic development (BP,-4); 

pyridoxal phosphate binding (MF,-4);    
CHIANG_LIVER_CANCER_SUBCLASS_INTERFER
ON_UP (LS,-5) 
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E 
mitochon-
drion outer 
membrane 

MET  regulation of insulin secretion (BP,-5); 
mitochondrial outer membrane (CC,-4);  

CYTOTOXIC_PATHWAY (BC,-16); 
THELPER_PATHWAY (BC,-16); 
SENGUPTA_NASOPHARYNGEAL_CARCINOMA_D
N (LS,-5); Muscle (TS,-4) 

I 
response to 
cyclic com-
pound 

MET  
cellular response to organic cyclic com-
pound (BP,-5); endoplasmic reticulum 
lumen (CC, -5) 

KEGG_FOLATE_BIOSYNTHESIS (KG,-7); 
MARTINELLI_IMMATURE_NEUTROPHIL_DN (LS,-
6); Ben−Porath_UP (LS,-6) 

J mitochon-
drion MET  

sphingolipid metabolic process (BP,-5); 
ATP hydrolysis coupled proton transport 
(BP,-4); cytochrome−c oxidase activity 
(MF,-4); mitochondrion (CC,-4) 

GAL_LEUKEMIC_STEM_CELL_DN (LS,-6); 
WU_CELL_MIGRATION (LS,-5); 
WALLACE_PROSTATE_CANCER_UP (LS,-4);   

K respiratory 
chain MET  extracellular matrix organization (BP,-4); 

respiratory chain (CC,-5);   
HADDAD_T_LYMPHOCYTE_AND_NK_PROGENIT
OR_UP (LS,-5) 
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2.6 Gene sets in concert with inflammation 
Below we show galleries illustrating the behavior of selected gene sets using the respective GSZ-profiles and gene 
set population maps. All gene sets selected in this subsection mostly accumulate in the right upper corner of the 
map for GBM and strongly upregulate in the MES- and downregulate in the PN-subtypes. Note however that 
slightly different accumulation patterns for, e.g. ‘chemokine activity’ and ‘angionesis’ gives rise to different profiles 
for the CL (blue), NL (pink) and NOR (ocher) samples. These gene sets also enrich in the PCP-maps however in a 
slightly less localized manner. 
 

 
Figure S 19: Selected profiles and population maps of gene  sets ‘in concert with inflammatory response’ in GBM. Regions of 
overrepresentation in the maps are indicated by red-dotted ellipses. The letters refer to the respective overexpression spots. 
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Figure S 20: Selected profiles and population maps of gene sets ‘in concert with inflammatory response’ in PCP. Regions of 
overrepresentation in the maps are indicated by red-dotted ellipses. The letters refer to the respective overexpression spots. 
Note that we chose the same sets as in Figure S 19 in GBM. 
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2.7 Gene sets in concert with cell division 
Gene sets which change in concert with cell division act partly antagonistic in the PN and MEs subtypes compared 
with the gene sets changing in concert with inflammation analyzed in the previous subsection. Also here, modifica-
tions of the distributions of the genes in the map give rise to different profiles for the CL, NL and NOR samples. 
 

 
 
Figure S 21: Selected profiles and population maps of gene sets ‘in concert with cell division’ in GBM. Regions of overrepre-
sentation in the maps are indicated by red-dotted ellipses. The letters refer to the respective overexpression spots. 
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Figure S 22: Selected profiles and population maps of gene sets  ‘in concert with cell division’ in PCP. Regions of overrepre-
sentation in the maps are indicated by red-dotted ellipses. The letters refer to the respective overexpression spots. Note that we 
chose the same sets as in Figure S 21 for GBM. 
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2.8 Cancer gene sets in GBM 
In this subsection we characterize gene sets extracted from other cancer studies either as highly specific for lym-
phoma subtypes and/or as signature sets for poor prognosis or common cancer genes. Note that these latter gene 
sets are typically upregulated in PN, and to a less degree, CL samples of GBM. They accumulate mainly in the 
ranges of spots N and/or O. 
 

 
Figure S 23: Enrichment of cancer sets in GBM: Sets up- and down-regulated in Burkitts lymphoma (left part, 16) and common 
cancer gene sets taken from refs. 17-19.  
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2.9 Gene sets related to different spot-modules  of GBM 
In this subsection we collect gene sets showing more diverse enrichment patterns and which are mainly located 
near spots which are upregulated in the intermediate GBM-subtypes NL or CL and in healthy brain (Figure S 24). 
For example, sets related to nervous function accumulate in spot K and upregulate in NOR- and NL-samples. 
Figure S 25 shows a collection of diverse gene sets. ‘Mitochondral activity’ is related to spots I and J with specific 
overexpression in the NL-subtype and underexpression in the CL-subtype. In contrast, spot A can be assigned to 
‘aging brain_DN’ and ’axon injury’ with moderate upregulation in CL- and NL-subtypes. Spot A might be related 
to DNA damage as indicated by the population map of the gene set referring to DNA damage after UV radiation. 
 

 
 
Figure S 24: Selected profiles and population maps of gene sets overexpressed in the NL- or CL-subtypes. Regions of 
overrepresentation in the maps are indicated by red-dotted ellipses. The letters refer to the respective overexpression spots. 
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Figure S 25: Gene sets related to diverse processes. 
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2.10 Cell type and tissue sets in GBM 
In this subsection we analyze gene sets derived from different brain tissues and cell lines of nervous tissues. Note 
for example, that developing astrocytes show a similar signature as genes sets changing in concert with ‘cell divi-
sion’ genes (see Figure S 17) and partly, common cancer genes (Figure S 23). The astrocytic signature, on the other 
hand, accumulates in spot A with joint upregulation in NL and CL subtypes and joint downregulation in MES and 
PN subtypes. On the other hand, the oligodendrocytic, neuronal and healthy brain signatures are clearly antagonis-
tic in CL and NL samples. However, they differ in the regulation profiles in the MES and PN samples.  
 

 
Figure S 26: Selected profiles and population maps of gene sets related to different nervous cells and tissue. Sets are taken from 
the brain transcriptome data base 20 and tissue profiling study (nervous system) 12. 

 
  



36 
 

 
2.11 Contaminations, outliers and misclassified samples 
Large tumor sample collections are prone to different effects not (or not directly) related to the expression profiles 
of the diseased tissue such as contaminations with healthy tissue (brain, blood etc.), different levels of RNA quality 
after extraction and wet lab preparation, technical biases due to day-to-day variations of hybridizations and data 
recordings. Moreover, biological patient-to-patient variance is typically high and can be caused by other factors 
than the disease under study. The noisy character of the GSZ-profiles and also the scatter of the global expression 
characteristics manifest this variability of the data. The development, selection and qualified application of suited 
methods of quality control aiming at identifying, understanding and possibly also removing such effects represent a 
separate complex topic not addressed here in detail. However, our portraying approach offers a simple and direct 
option to check the whole-genome expression landscapes of the individual samples by visual inspection of their 
molecular ‘faces’. Particularly one searches for conspicuous spot patterns that clearly deviate from that of the ma-
jority of samples assigned to the same class. 
In Figure S 27 we re-plotted the CN similarity plot of GBM together with selected individual portraits of samples 
which are located either outside of the main clusters and/or within an apparently ‘false cluster’. For example, sam-
ples no. 326 and 156 originally assigned to the MES- and PN-subtypes are found within the ‘wrong’ area of the net 
near the green PN- and yellow MES-cluster, respectively. Comparison of the portrait of sample 156 (and partly 
321) with the mean portraits of the MES-and PN-subtypes reveals that its expression landscape obviously repre-
sents a combination of both expression signatures where the MES-signature more heavily contributes to the mix-
ture than the PN-signature in contradiction to the original class assignment taken from ref. 21. Another heterogene-
ous group of samples (e.g. no. 290, 152, 358) form a set of outliers near the blue CL-cluster. Inspection of the re-
spective portraits reveals that a few overexpression spots (e.g., ‘L’, ‘B’ and ‘D’) are obviously responsible for this 
behavior: They are not observed in the majority of the remaining CL-samples. A similar argumentation applies to 
outlier samples no. 326, 84 and 87 showing strong expression of spot ‘n1’. Note also that these groups of outliers 
are mostly heterogeneous, i.e. they contain samples assigned to different subtypes.  
These ‘outlier’-spots are mostly relatively rare and unspecific for one of the GBM-subtypes (see e.g. the abundance 
bar plot for spots ‘L’ and ‘D’). This result suggests that these features are presumably caused by contaminations of 
non-tumor cells or by treatment effects and thus they are not or not directly related to GBM. Gene set analysis 
shows, that spot ‘B’, for example, contains an enriched number of genes related to ‘xenobiotics’ and ‘drug metabo-
lism’. 
Hence, misclassifications of samples can be caused by the mixing of different subtypes and also by outlier features 
which are presumably not related to cancer, but which make samples of different subtypes similar. These examples 
demonstrate that our portraying approach not only detects potential outliers and misclassified samples but in addi-
tion helps researchers to generate hypotheses about the origin of these effects and also to extract more detailed in-
formation from the data, for example, by applying spot-related functional analysis. 
Figure S 28 illustrates how the expression portraits in log FC and log log FC systematically change throughout the 
samples. One detects samples of the PN and MES subtypes which are obviously misclassified showing similar por-
traits as the majority of samples of the respective antagonistic subtype. On the other hand, the portraits of the in-
termediate subtypes CL and NL continuously vary between the portraits of the PN and MES subtypes. 
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Figure S 27: Outliers and misclassified samples in GBM are indicated in the CN-similarity plot by arrows together with the 
respective sample portraits. The subtype-averaged mean portraits are shown for comparison at the left and right margins of the 
figure. The red circles and the letters assign the spots causing the partly atypical properties of the samples. 

 
 
Figure S 28: Samples suspect for misclassification are indicated in the CN-plot of GBM together with their portraits in log FC- 
and log log FC-scales.  
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