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Supplementary Material 

S1: Single base contribution of fluorescence emission 

The length of the RNA fragments, Nb
RNA, typically exceeds the length of the 25meric oligomer probes. 

Consequently also labelled bases which dangle outside of the probe/target duplex potentially 

contribute to the measured fluorescence intensity in addition to labels attached to the 25meric target 

region. Let us denote the number of bases outside of the respective 25meric duplex by Nb
out for a RNA 

fragment of total length Nb
RNA = Nb + Nb

out. The respective number of labelled bases inside and outside 

of the 25mer is Np
F,in(ξT) and Np

F,out(ξT,out), respectively, where ξT,out is the subsequence of the target 

RNA exceeding the probe on both sides. The fluorescence intensity of a RNA fragment is related to 

the number of labelled c* and u*, which is given by the number of complementary G and A of the 

target gene according to 
F,S F,in T F,out T,out u* T T,out c* T T,out A P P,out G P P,out
p p p p p p pN N ( ) N ( ) N ( ) N ( ) N ( ) N ( )= ξ + ξ = ξ + ξ + ξ + ξ = ξ + ξ + ξ + ξ  

if one assumes exclusively WC pairings. The contribution to the sensitivity of a selected probe owing 

to the number of potentially labelled bases per target, Np
F,S, is (see Eqs. 1 and 7) 
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where averaging was performed over the probe set (Σ ≡ set).  

The coefficient ∆p
F specifies the contribution of fluorescence labelling per potentially labelled base in 

the considered target sequence of length Nb. Effectively each labelled base pair increases and each 

nonlabelled pair decreases the sensitivity by ∆p
F. With δNp

F = δNp
F.in + δNp

F,out (δNp
F,i = Np

F,i -



 <Np
F,i>set, i = in, out) and <δNF>set=0 one obtains the following approximation for ∆p

F in the limit of 

small δNp
F/<Np

F>set << 1, which is justified for sequence lengths Nb
RNA > 20, 

∆p
F = [log(1+δNp

F/<Np
F>set) - <log(1+δNp

F/<Np
F>set)>set]/δNp

F,in  

≈ (ln10⋅δNp
F,in⋅<Np

F>set)-1 (δNp
F - <δNF>) = (1 + δNp

F,out/δNp
F,in)/(ln10 <Np

F>set). 
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 specifies the probability to find Np
F 

potentially labelled nucleotides among a total sequence length of the target fragment of Nb
RNA 

nucleotides where p ≈ 0.5 is the probability for a uracyl or a cytosine at any position of the target 

sequence. After substitution of the set average by the overall mean of the number of labels per target 

by <Np
F>set ≈ <Np

F>binom = p⋅Nb
RNA one gets the relative fluorescence contribution per sequence 

position 
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Its mean value, 
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provides the average contribution per considered base within a probe sequence of lenth Nb as a 

function of the total length of the RNA fragment, Nb
RNA. The mean incremental contributions are 

approximated in Eq. A3 by the standard deviation of the binominal distribution according to 

<δN>set ≈ p⋅N0.5.  

Bases in the probe sequence referring (B=A,G) and not-referring (B=T,C) to labels in the 

complementary target sequence add and subtract the constant contribution ∆F to the sensitivity, 

respectively. 



S2: Signal and sensitivity error of single Affymetrix GeneChips 

The weighting factor for the least squares fits of the positional dependent sensitivity models is given 

by the variance of the experimental sensitivity data, ωP
p

2 ≈ var(YP
p) 1. It can be estimated for each 

probe from chip replicates using standard error analysis. The SB sensitivity contributions are partly 

obtained from least square fits of the sensitivity data of single chips. We therefore developed a 

method, which estimates var(YP
p) for each individual chip using selected probe intensities. 

The variance of the sensitivity can be directly related to the variance of the respective signal intensity 

according to Eq. 6, var(YP
p) ≈ var(log(Ip

P)) + var(<log(Ip
P)>) ≈ var(log(Ip

P)) (1+(Nprobe-1)-1) ≈ 

var(log(Ip
P))  where Nprobe = 11 - 20 is the number of probes per probe set. For the estimation of the 

chip-specific value of ωP
p

2 we make use of the fact that a considerable number of PM and MM probes 

are present as replicates on each Affymetrix© chip. We identified repeated probes by comparison of all 

sequences present on the chip. For example, the human HG U133 chip contains 3463 probes in 

duplicate (2x), 725 in triplicate (3x), 186 fourfold (4x), 77 fivefold (5x), 37 sixfold (6x), 7 sevenfold 

(7x), 2 ninefold (9x) and one each for 12x, 16x and 20x. We calculated the variance, varexp(log(Ip
P)) 

(P=PM, MM) and log-averaged mean intensity, <Ip
P> = exp(<ln Ip

P>replicate), for each of these groups of 

replicates for a selected chip. 

 

Figure S2: Log-log plot of the variance of the 

intensities of replicate PM and MM probes 

present on a HG U133 chip as a function of 

the mean intensity <IP> averaged over probes 

present in duplicate and triplicate (see legend 

in the Figure: 2,3…small points), four- and 

fivefold (4,5…small triangles) and more than 

fivefold (>5…rhombes). The lines are 

calculated according to the error model (Eq. 

A5) with a/b/c = 0.04/5/50 (thick line) and 

0.04/0/50 (thin line) for P=PM and MM. The 

panel above shows the respective analysis of 

log-intensity differences, PM-MM. In this 

case the variance is given by var(logIPM-

MM) = var(logIPM – logIMM) and the squared 

mean intensity by <IPM+MM>2 = <IPM⋅IMM >-

1 = exp[<ln(IPM+ IMM)>. The thick and thin 

lines are calculated with a/b/c = 0.03/10/100 

and 0.03/0/100, respectively. 

 

 



The uncorrected signal intensity can be rewritten according to Eq. 1 (in the original article) in a 

simplified version as Ip
P* ≈ (<Fchip⋅NF⋅cRNA>+eF)⋅exp[(<lnKp

P>+eG)] + (<βp
P> + eB) where the angular 

brackets, <…>, denote means over replicated probes. The ei (i=F, G, B) are error terms and βp
P is the 

optical background of each probe, which is not related to hybridization. With 

<Ip
P> ≈ <Fchip⋅NF⋅cRNA⋅Kp

b> one obtains the background-corrected intensity  

Ip
P ≈ Ip

P* - <βp
P> ≈ (<Ip

P>+eF)⋅exp(eG) + eB  .     (A4) 

The constant Fchip depends on the yield of labelling (fraction of labelled uracyls and cytosines), on the 

number of oligos per spot and on the efficiency of the detector and of the imaging system (see ref. 2 for 

details). Consequently the first error term, eF, considers effects such as variations of the labelling 

efficiency, of the number of oligos per probe spot and of their density, of the RNA concentration and 

the noise of the detector and of the imaging system. The exponential term, εG, can be rationalized as 

the error of the free energy of duplex formation, ∆Gp
b∝-lnKp

P, which is related, e.g., to incorrect 

sequences of individual oligos in each probe spot due to imperfect synthesis and/or to non-equilibrium 

effects of target binding. The last error, eB, considers the noise of the detector and of the imaging 

system in the absence of hybridization. 

The variance of log transformed and background corrected signal intensity is described to a good 

approximation by varmod[log(Ip
P)] ≈ a + c/(<Ip

P>)2 with a ≈ sG
2/(ln10)2 and c ≈ (sF

2+sB
2) if one assumes 

exclusively normally distributed error terms with mean 0 and variance si
2 (i=F, G, B). This result 

agrees with a previously proposed error model of microarray intensity data 3.  

Figure S2 compares experimental and theoretical variance data of PM and MM intensities and of their 

difference in a double-logarithmic scale. The model curves systematically underestimate the 

experimental variance data in the intermediate intensity range, 100 < IP < 1000 (see thin lines in Fig. 

S2). Considerable better agreement was achieved if one adds a term ~ <IP>-1 according to (see thick 

lines in Fig. 13) 

( )P
mod p P P 2

p p

b cvar log I a
I I

≈ + +
< > < >

   .     (A5) 

The additional term can be tentatively rationalized as non-Gaussian error terms, which contribute to eF. 

Here we use Eq. A5 without further specification as an empirical measure to estimate the weighting 

factor in the sum of squared residuals in the least squares fits as a function of the signal intensity. 

The analysis of the intensity difference, var(logIPM – logIMM), as a function of <IPM⋅IMM >-1 = exp[-

<ln(IPM + IMM)> provides similar plots as that for PM and MM (Fig. S2, panel above). The respective 

background error is however increased whereas the signal error decreases compared with the 

respective error data of PM and MM probes. This result is compatible with a uncorrelated background 

noise of PM and MM intensities. In this case one expects for the background error of the log-

difference of PM and MM probes a standard deviation of sB
2(PM-MM) ≈ sB

2(PM) + sB
2(MM) ≈ 

2sB
2(PM) , where the arguments PM and MM refer to the log-transformed intensities of the respective 

probes. On the other hand, the signal error term, “a”, of var(logIPM – logIMM) slightly reduces when 



compared with that of the individual PM and MM probes. This result can be explained with 

correlations between the PM and MM intensities, which are discussed in the paper. 
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S3: Overview of SB free energy parameters of DNA/RNA duolexes 

Relations between the positional dependent SB free energy and fluorescence contributions of Watson-

Crick (WC) and self complementary (SC) pairings in DNA/RNA oligonucleotide duplexes of the PM 

and MM microarray probes upon-specific (S) and non-specific (NS) hybridization a 

 

Du- Single base contributions 
plex probe level base pair level 
 Probe P= PM,MM PM MM 
 position k≠13 k=13 k=13 

NS base pairing WC: B-bc WC: B-bc WC: Bc-b 

 ε0,k
P,NS ≈ ε0,k

WC ε0,13
WC ε0,13

WC 

 ε0,k
PM-MM,NS ≈ 0 ε0,13

WC-WC ≈ -(logΚ0
PM,NS- logK0

MM,NS) 

 ∆εk
P,NS(B) ≈ ∆εk

WC(B) ∆ε13
WC(B) ∆ε13

WC(Bc) 

 ∆εk
PM-MM,NS(B) ≈ 0 ∆ε13

WC-WC(B) = -∆ε13
WC-WC(Bc) ≡ ∆ε13

WC(B) - ∆ε13
WC(Bc)  

C ≈ T ≈ -G ≈ -A <0 

 ∆ϕk
P,NS(B) ≈ ∆ϕk

WC(B) ∆ϕ13
WC(B) ∆ϕ13

WC(Bc) = - ∆ϕ13
WC(B) 

 ∆ϕk
PM-MM,NS(B) ≈ 0 ∆ϕ13

WC-WC(B) ≡ ∆ϕ13
WC(B) - ∆ϕ13

WC(Bc) = 2∆ϕ13
WC(B)  

|∆ϕ13
WC-WC(B)| ≈ |∆F| ; G ≈ A ≈ -C≈ -T >0 

 σk
PM-MM,NS(B) ≈ 0 ∆ε13

WC-WC(B) - ∆ϕ13
WC-WC(B)  

S base pairing WC: B-bc WC: B-bc SC: Bc-bc 

 ε0,k
P,S ≈ ε0,k

WC ε0,13
WC ε0,13

SC 

 ε0,13
PM-MM,S 0 ε0,13

WC-SC ≡ ε0,13
WC - ε0,13

SC ≈ -(logΚ0
PM,S- logΚ0

MM,S) 

 ∆εk
P,S(B) ≈ ∆εk

WC(B) ∆ε13
WC(B) ∆ε13

SC(Bc) 

 ∆εk
PM-MM,S(B) ≈ 0 ∆ε13

WC-SC(B) ≡ ∆ε13
WC(B) - ∆ε13

SC(Bc) ≈ ∆ε13
WC(B) 

C > G ≈ T > A 

 ∆ϕk
P,S(B) ≈ ∆ϕk

WC(B) ∆ϕ13
WC(B) ∆ϕ13

SC(Bc) = - ∆ϕ13
WC(Bc) 

 ∆ϕk
PM-MM,S(B) ≈ 0 ∆ϕ13

WC-SC(B) ≡ ∆ϕ13
WC(B) - ∆ϕ13

SC(Bc) ≈ 0 

 σk
PM-MM,S(B) ≈ 0 ∆ε13

WC-SC(B) 
 

 
a Single base related free energy (ε), fluorescence (ϕ) and sensitivity (σ) contributions to the probe 

intensities. The index k indicates the position of base B=A,T,G,C along the probe sequence. k=13 refers 
to the middle base whereas k≠13 refers to all positions outside the middle base. The superscript “c” 
denotes the complementary base, e.g., for B=A one gets of Bc=T. Single See text. 

 

  


