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Abstract
Background: Microarray experiments rely on several critical steps that may introduce biases and
uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification
and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw
intensity level. Also the chosen array-type and the up-to-dateness of the genomic information
probed on the chip affect the quality of the expression measures. In the accompanying publication
we presented theory and algorithm of the so-called hook method which aims at correcting
expression data for systematic biases using a series of new chip characteristics.

Results: In this publication we summarize the essential chip characteristics provided by this
method, analyze special benchmark experiments to estimate transcript related expression
measures and illustrate the potency of the method to detect and to quantify the quality of a
particular hybridization. It is shown that our single-chip approach provides expression measures
responding linearly on changes of the transcript concentration over three orders of magnitude. In
addition, the method calculates a detection call judging the relation between the signal and the
detection limit of the particular measurement. The performance of the method in the context of
different chip generations and probe set assignments is illustrated. The hook method characterizes
the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We
show that the proper judgement of these effects requires the disentanglement of non-specific and
specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The
consequences of modifying probe/target interactions by either changing the labelling protocol or
by substituting RNA by DNA targets are demonstrated.

Conclusion: The single-chip based hook-method provides accurate expression estimates and
chip-summary characteristics using the natural metrics given by the hybridization reaction with the
potency to develop new standards for microarray quality control and calibration.

1. Background
DNA microarray technology enables conducting experi-
ments that measure RNA-transcript abundance (so called

gene expression or expression degree) on a large scale of
genomic sequences. The quality of the measurement sys-
tematically depends on experimental factors such as the
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performance of the measuring "device", e.g., on the cho-
sen array-type, the design of the chip-platform and -gener-
ation and on the particular probe design, on one hand;
and also on the quality of the sample, e.g. on the source
of RNA and the used hybridization-pipeline including the
protocol of RNA-extraction, -amplification and -labelling,
on the other hand. Other essential factors affecting the
quality of the expression measures are the quality and up-
to-dateness of the genomic information probed on the
chip and last but not least, the performance of the calibra-
tion algorithm which transfers raw intensity data into
suited measures of transcript abundance. This so-called
calibration step aims at removing systematic biases from
the raw data which, in the ideal case, would allow the
determination of the exact number of transcript copies of
every probed transcript and thus direct comparison of
expression measures independently of the used array type
and sample preparation protocol.

Apparent sources of variance can be, as for each experi-
mental technique, divided into technical and biological
ones, as well as, into systematic (see above) and random
ones. The quality of the chip measurement and of the sub-
sequent data calibration is characterized by their accuracy
(the systematic bias between the measured and true
expression value), precision (the uncertainty in replicated
measurements), sensitivity (the expression range poten-
tially covered by the measurement) and specificity (the
selective power of the measurement to respond only to
the specific targets).

The development of appropriate calibration method
requires in the first instance appropriate models and met-
rics to identify, to assign and to quantify the biases in each
measurement. In the accompanying paper we presented
the basics of the so-called hook-method, a simple and
intuitive approach providing a natural metric system to
characterize the hybridization on a particular array. The
method divides into two essential constituents: (i) the
analysis of the data in terms of the competitive two-spe-
cies Langmuir hybridization model using the so-called
hook-plot and (ii) the correction of the raw intensities for
parasitic effects such as the non-specific hybridization,
saturation and sequence-specificity to output expression
measures in intrinsic units which are defined by the prop-
erties of the measuring device. The hook method is a strict
single-chip calibration approach which treats each array
as an independent measurement. This way the method
accounts for chip-specific systematic effects which the cal-
ibration step intents to correct.

In this paper we illustrate the performance of the hook
method. We present examples dealing with different
issues of array-measurements: the accuracy and precision
of expression measures, the comparability of array experi-

ments for different chip-generations, the effect of up-dat-
ing the probe assignments using latest genomic
information, of RNA-quality and of different options of
the preparation protocol such as labelling reagents and
the type of the labelled molecule or replacing RNA-targets
with DNA. We deliberately select a relatively wide range of
different problems to illustrate the power of the method
to estimate various systematic effects within a unique
framework of chip-characteristic and to demonstrate the
potential of developing new correction algorithms.

In the first part of the paper we summarize the essential
chip characteristics provided by the hook-method. In the
second part special benchmark experiments are analyzed
to estimate transcript related expression measures. The
third part deals with hybridization quality control based
on the hook analysis.

2. Chip characteristics
Hook parameters
Figure 1 depicts a typical graphical output-summary of the
hook-analysis for two hybridizations performed on two
different chip-types taken from the Genelogic dilution [1]
and the GoldenSpike [2] experimental series (see also Fig-
ure 2 with data taken from the HG-U95 Latin square
spiked-in series [3]). The Δ-vs-Σ plots characterize the
hybridization of the particular chip. They are obtained by
transforming the probe intensities of one GeneChip
microarray into Δ = logIPM - logIMM and Σ = 0.5(logIPM +
logIMM) coordinates and subsequent smoothing (IPM and
IMM denote the spot intensities of the PM and MM probes
after optical background correction; the logs are base 10
throughout the paper). The corrected version of the Δ-vs-
Σ plot uses intensity values which are corrected for
sequence-specific sensitivity effects. These plots are called
hook-curves because of their typical shape. Additional
characteristics of a particular chip-hybridization are the
signal-density distribution and the four positional-
dependent sensitivity profiles of the PM and MM probes
upon specific and non-specific hybridization, respec-
tively. These profiles are calculated from the intensity data
of the chosen chip and used to correct the intensities for
sequence-specific affinities.

The corrected hook-data are well fitted by the Langmuir-
absorption model which predicts the theoretical curve
shown in Figure 1. The fit provides characteristic parame-
ters (see Table 1, see the accompanying paper [4] for
details) of the particular hybridization judging properties
such as the mean non-specific and specific signal, the sat-
uration intensity and the mean PM/MM- gain of the sen-
sitivity caused by the central mismatch of the MM probes
(see Table 2, data are taken from the hook-analyses of
more than 500 GeneChip arrays of different type and ori-
gin, see also [5] for details). Note that selected character-
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istics such as the non-specific binding strength (width)
and the PM/MM-gain (height) are directly related to the
geometrical dimensions of the hook-curve. Hence, the
respective characteristics can be roughly and simply esti-
mated by visual inspection of the Δ-vs-Σ plot.

Different parts of the hook have been assigned to (see Fig-
ure 2 from the left to the right) the N (non-specific)-, mix
(mixed)-, S (specific)-, sat (saturation)- and as (asymp-
totic)- regimes of hybridization. These regimes reflect the
fact that the contribution of specific hybridization to the
spot intensities progressively increases along the rising
part of the hook from tiny amounts in the N-regime to
about 100% near the maximum. In contrast, the degree of
saturation progressively increases along the decaying part
from almost no saturation effects near the maximum to
complete saturation in the as-regime. Note the considera-

ble distortion of the N- and mix-regimes between the raw
and corrected hooks. These marked differences between
both hook-versions emphasize the importance of the cor-
rection step.

The N-range of the hook-curve is characterized by the var-
iance of the underlying probe-level data, σ, which are well
described by a normal distribution. The mean specific sig-
nal of the particular hybridization, <λ>, is calculated as
log-mean of the S/N-ratio of the probe sets beyond a cer-
tain threshold (e.g. R > 0.5, see below). Note that the dis-
tribution of the specific signal is well approximated by an
exponential decay in many cases. Then, the characteristic
"decay" constant λ defines the Σ-range over which the
probability of detecting a signal decays by one order of
magnitude.

Hook-analysis of hybridizations on the human genome HG-U95 (left panel) and Drosophila genome DG-1 (right panel) Gene-Chips taken from the Genelogic dilution [1] and the GoldenSpike [2] experimental series: The upper panel shows the raw and the sensitivity-corrected hook curves, the fitted theoretical curve and the distribution of the Σ-signal values (right axis, only left panel)Figure 1
Hook-analysis of hybridizations on the human genome HG-U95 (left panel) and Drosophila genome DG-1 (right panel) Gene-
Chips taken from the Genelogic dilution [1] and the GoldenSpike [2] experimental series: The upper panel shows the raw and 
the sensitivity-corrected hook curves, the fitted theoretical curve and the distribution of the Σ-signal values (right axis, only left 
panel). Each hybridization is characterized by the parameters given in the figure (see also Table 2). These chip-characteristics 
are obtained from the fit. They are related to the geometrical dimensions of the corrected hook curve (see text). The lower 
part in each panel shows the four sensitivity profiles: PM-N and MM-N (left) and PM-S and MM-S (right).
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Hook curves of different chip generations
Figure 3 shows a collection of representative hook-curves
taken from four hybridizations of human-genome chips
of different generations. Along the chip generations the
spot-size of the probes decreases from 20 μm (U95), over
18 μm (U133A) to 11 μm (U133-plus2). The reduction of
spot-size has enabled to increase the number of probe sets
per chip from 16.000 over 22.000 to 54.000, respectively
[6,7]. In addition, this development is accompanied by
modifications of the reagent-kits and the scanning tech-
nique [7,8]. Importantly, also probe design and selection
have been improved by applying more sophisticated
genomic and thermodynamic criteria especially for chip
generations following the U95. Chip data shown in Figure
3 refer to RNA prepared from tissue samples (thyroid nod-
ules; [9]) and to Universal Human Reference RNA [10].

The different shapes of the uncorrected hook curves of the
U95 and U133 chips, particularly the broader N-range of
the former one, can be explained by the partially subopti-
mal quality of the probe selection for the U95-generation
(which also applies to the design of the DG1-chip shown
in Figure 1 and Figure 2) containing a relatively high

number of weak-affinity probes. For the U133 series the
N-range considerably narrows essentially due to better
quality of the probes. It is important to note that our affin-
ity correction levels out this difference to a large extent
providing corrected hook curves of very similar shape for
chips of different generations such as the U95 and U133
arrays.

We obtained analogous results for hundreds of GeneChip
expression arrays of different specifications: chip genera-
tions, species (human, mouse, rat, drosophila, rice, arabi-
dopsis etc.) and samples (patient cohorts, cell lines,
benchmark experiments) [5]. Table 2 lists typical parame-
ter-ranges obtained in these studies. For example, the PM/
MM-affinity gain for specific hybridization shows that the
central mismatch of the MM causes on the average the
nearly tenfold (s ~ 7–11) increase of sensitivity of the PM-
probes compared with that of the MM. On the contrary,
for non-specific binding one expects on the average the
same sensitivity for the PM- and MM-probes. The respec-
tive PM/MM-gain parameter however indicates a small
but significantly increased PM-sensitivity, n ~ 1.05 – 1.25.
We tentatively attribute this effect to false positive detec-

Hybridization ranges of the raw (lower part) and the corrected (upper part) hook-curves calculated from hybridizations of the HG-U95 (left) and DG-1 (right) Gene Chips (see also Figure 1)Figure 2
Hybridization ranges of the raw (lower part) and the corrected (upper part) hook-curves calculated from hybridizations of the 
HG-U95 (left) and DG-1 (right) Gene Chips (see also Figure 1). The dotted lines indicate the hybridization ranges character-
ized by predominantly non-specific (N) and specific (S) binding, by a mixture of significant S- and N-contributions (mix), by the 
progressive saturation of the probe spots with bound transcripts (sat) and by almost completely saturated probes (as). Affinity 
correction considerably changes the shape of the hook-curve and the extent of the hybridization ranges. The corrected hook-
curve and the fit are characterized by their geometrical dimensions; width (β), height (~α), start- (Σ(0), Δ(0)) and end- (Σ(∞)) 
positions; which in turn characterize the particular hybridization in terms of the mean non-specific background contribution, 
the PM/MM-gain etc. (see Table 2 for details). Compare also with Figure 1: The HG-U95 data were taken from different exper-
iment series (Affymetrix spiked-in series here [3] and Genelogic dilution series [1] in Figure 1).
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tions in the N-range, i.e. to a certain amount of specific
hybridization among the absent probes (see below). The
relatively narrow data-range of the obtained hybridization
characteristics reflects the common physical-chemical
basis of the method which is determined by properties
such as the oligonucleotide density and size of the probe
spots, the common MM probe-design and hybridization
conditions. A particular example which demonstrates
apparent inconsistencies between the expression esti-
mates obtained from different chip-generations will be
given below.

Detection call
The onset and further increase of specific binding gives
rise to a characteristic breakpoint of the hook curve which
clearly separates the N- and mix- hybridization ranges.
The corresponding change of the slope of the hook curve
can be rationalized in terms of relatively strongly corre-
lated PM- and MM-intensities in the N-range which pro-
gressively "decouple" upon increasing amount of specific
binding because it much stronger affects the PM than the
MM. We use the breakpoint to classify the probe sets into
absent and present ones in analogy with the detection call
provided by MAS5 [11].

To verify the used break-criterion in a simple illustrative
fashion we analysed two special chip hybridizations. The
GeneChip Yeast Genome 2.0 Array (YG 2.0) contains
probe sets to detect transcripts of both, the two most com-
monly studied species of yeast, Saccharomyces cerevisiae
and Schizosaccharomyces pombe. The YG 2.0 array thus
includes 5,744 probe sets for 5,841 of the 5,845 genes
present in S. cerevisiae and 5,021 probe sets for all 5,031
genes present in S. pombe. The evolutionary divergence
between S. cerevisiae and S. pombe over 500 million years
ago caused enough sequence divergence between the two
species to require selection of separate probe sets for all
genes, even the closest cross-species orthologs [12]. Due
to this sequence divergence one expects only weak cross-
species hybridization.

Figure 4 shows the hook plot for a hybridization of the
array with RNA from S. cerevisiae [13]. The break criterion
provides a total absent rate of 47% which well agrees with
the percentage of probe sets for S. pombe printed on the
chip (~47%). Species-specific masking indicates that the
absent probes originate nearly exclusively from the probe
sets designed for S. pombe which indeed accumulate
nearly completely in the N-range of the hook whereas the
S. cerevisiae-probe sets cover the mix-, S- and sat-ranges as
expected. About 5% of each fraction "overlap", i.e. they
refer to present probe sets of S. pombe and absent sets of
S. cerevisiae, respectively.

The second example was taken from the Golden Spike
experiment in which PCR products from a Drosophila
Gene Collection referring to 3,860 probes were spiked
onto Drosgenome DG1-arrays [2]. On this array 10,131
probe sets out of the total number of 14,116 are called
,empty' because they are not assigned to any of the added
cRNA spikes. Again the absent rate of 70% agrees with the
fraction of empty probes (~72%). Selective masking of
either the spiked or the empty probe sets shows that the
latter ones indeed accumulate in the N-region and are
called absent whereas the spikes are predominantly
flagged as present (see right part in Figure 4).

The selective masking in these both examples shows that
the simple break criterion gives rise to false present calls
(of potentially absent probes) of less than 5 – 7% even if
one neglects cross hybridization. The break-criterion pro-
vides a sort of detection limit for the specific expression
signals. The detection call thus divides the probe sets into
subsets with detectable and essentially not-detectable
amounts of transcripts. The false present and false absent
rates depend on the degree of cross hybridization and on
other factors which will be addressed below.

In the next section we present other examples showing
that the hook method reasonably estimates the detection
limit of the particular array in terms of present and absent

Table 1: Geometrical parameters of the hook curve

Hook parameter symbol typical range characteristics

Start point Σ(0) ≈ Σstart, 1.0 – 2.5 Non-specific signal
Δ(0) ≈ Δstart 0.0 – 0.15 PM/MM-gain (N)

End point Σ(∞), 3.5 – 4.8 Saturation signal
Δ(∞) 0 PM/MM-gain (as)

Width β = Σ(∞)-Σ(0) 2.2 – 3.2 Measuring range, non- specific binding strength in logarithmic scale
asymptotic height α 0.75 – 1.1 PM/MM-gain (S)
decay constant λ 0.5 – 1.5 Decay rate of the density distribution of the Σ-values; this S/N-index 

characterizes the mean ratio of specific and non- specific binding (S/N- 
ratio) in the logarithmic scale.

Expression index
φ = (β - Δ(0)) - λ ≈ β - λ

1.5 – 2.5 Mean specific signal in logarithmic scale1
2
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calls. The alternative calling-algorithm implemented in
MAS5 calculates the so-called discrimination score (DS)
of each probe pair which is directly related to its Δ-value
[4,11]. Then, one-sided Wilcoxson's rank test is applied to
the DS-values of each probe set together with appropriate
threshold-settings to estimate whether the set is present or
absent. The used test strongly penalizes negative PM-MM
signal differences. More than 40% of all probe pairs
amount to such "bright MM" (because MM > PM) in the
N-range whereas its percentage steeply decreases with
increasing Σ and virtually disappears in the S-range of the
hook [14]. This trend explains the correlation between the
call-rate obtained by both methods (see next section). For
the examples presented here MAS5 provides a distinct

smaller (36%) and an equal (70%) absent rate for the
yeast and golden spike hybridizations, respectively.

On the other hand, the hook criterion includes both, the
PM-MM difference in terms of the Δ coordinate and the
mean total signal in terms of Σ. The latter value adds a sec-
ond threshold which prevents probe sets with relatively
strong mean signals to be called absent. Moreover, the
break-criterion detects rather the change of the mutual
correlation between the PM and MM signals caused by the
onset of specific hybridization than a certain fixed signal
level. As a result, the hook-criterion "dynamically" shifts
with varying signal level using the break as a simple and
reasonable landmark whereas the MAS5 threshold is stat-
ically and less intuitively given in terms of p-values typi-

Table 2: Overview of the hybridization characteristics extracted from the hook-analysis.

Characteristics Equationb) characterizes...b) Typical rangec)

Chip-level (index "c" is omitted)
Optical background, Oa) log O = �log O�zones ...residual background intensity not related to 

hybridization; it is obtained using the Affy-zone 
algorithm performed prior to hook analysis

1.4 – 2.0

N-background signala)

log N = Σ(0) + Δ(0)
... mean background PM-intensity due to N-
hybridization

1.0 – 2.5

PM/MM-gain in the N- range log n = Δ(0) ...the PM-over-MM excess of the intensity 
presumably due to a certain amount of weakly 
(S-) expressed transcripts in the N-range

0.0 – 0.15

Saturation signala) log M = Σ(∞) ... the maximum possible intensity of the spots 4.0 – 4.9
N-binding strengtha)

log XN ≡ log XPM, N = -β + Δ(0)
... the (binding) strength of non- specific 
hybridization; measuring range of the chip

2.2 – 3.2

PM/MM-gain (S, the PM- over-MM 
excess of the intensity in the S-
range)

log s = α - Δ(0) ...the effect of the mismatch on specific binding 0.8 – 1.1

Mean S/N-ratioa) �λ� = �log(R + 1)�R > 0.5 ...mean (log-) S/N-ratio; R-range over which 
the density of expression values decays by one 
order of magnitude

0.2 – 1.5

Mean expression levela) �φ� = �λ� + log XN

�S� = 10-�φ�
...mean (log-) expression index in units of the 
specific binding strength

1.0 – 2.5

Standard deviation of the N- 
distributiona)

σ ...residual scatter of the corrected PM-
intensities in the N-range 
(log- scale)

0.25 – 0.35

Percent non-specific, %N; fraction 
of N-probes

%N, fabsent = %N/100 Percentage of probe sets in the N- 
range;...amount of "absent" probes

20 – 95%

Probe-set level (index "set" is omitted)
Hook coordinates Σhook, Δhook ...log-mean and log difference of the PM and 

MM intensities after optical background 
correction

1 – 4.7 and 0.0 – 1.1

S/N-ratio R ...ratio of the specific binding strength of the 
probe set and the mean non-specific binding 
strength of the chip, signal-to-noise level

0 – 100, R = 0 
indicates "absent" probes

expression level LS ≡ LPM, S ...expression degree in intensity units 
(PMonly, MMonly and PM-MM estimates)

10 – 100,000

S-binding strength XS ≡ XPM, S ...specific binding strength obtained as PMonly, 
MMonly or PM-MM_difference estimate

0 – 1

a) characteristics refer to the PM-probes; for O, M and σ virtually equal values for PM and MM are obtained
b) see the accompanying paper [4] for details
c) ranges of typical values are taken from the hook-analyses of more than 500 GeneChip arrays of different type and origin (see [5])

1
2

1
2
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cally predetermined by the default settings of the used
analysis program.

3. RNA-expression
Benchmark experiments with variable transcript 
concentration
Figure 5 and Figure 6 show the hook curves, the absent
calls and concentration measures of two special bench-
mark experiments. In the GeneLogic dilution series, cRNA
from human liver tissue was hybridized on HG-U95
GeneChips in various amounts [1]. The decrease of the
degree of non-specific binding upon dilution widens the
horizontal dimension of the hook curve (see upper panel
in Figure 5). Dilution decreases the concentration of spe-
cific and non-specific transcripts in a parallel fashion leav-
ing their concentration ratio virtually constant. As
expected, the S/N-ratio R of selected probes remains
essentially constant whereas the binding strength of spe-
cific binding progressively decreases (compare solid sym-
bols and thick lines in the lower panel of Figure 5).

The hook-method provides a virtually constant fraction of
absent probes independent of the dilution step (see mid-
dle part in Figure 5). This result can be rationalized in
terms of the condition of R = const, which corresponds to
virtually constant ordinate values, Δ ≈ const, in the mix-
range of the hook-plot (see dotted horizontal lines in the
upper panel in Figure 5). The horizontal shift of the hook
upon dilution only weakly affects the fraction of probes

below and above a certain R-value. Also the fraction of
probes below and above the break criterion for classifying
the probe sets into present and absent ones remains essen-
tially constant. The virtually constant absent rate properly
reflects the invariant composition of the hybridization
solution. Contrarily, the fraction of absent calls estimated
by MAS5 progressively increases upon dilution.

In the U133-spiked-in series of Affymetrix, a set of
selected RNA-transcripts (the spikes) is added in definite
concentrations to the hybridization solution [3]. The
hybridization cocktail also contains a RNA-extract from
HeLa-cells to mimic complex hybridization conditions.
Figure 6 shows the typical hook-curve calculated from the
intensity data of one chip of this experiment. The blue
curve corresponds to the probe sets which are mainly
hybridized with the non-spike RNA of the added back-
ground. The Δ-vs-Σ-coordinates of the probe sets detecting
the spikes are shown by open circles. Their positions cover
the full range of the hook curve and shift to the right with
increasing transcript concentration (0 – 512 pM). Note
that the distance of the position of a particular probe set
relative to the end point is inversely related to the specific
binding strength and thus to the specific transcript con-
centration.

Spike probe sets without specific transcripts (0 pM) and
with transcripts of only tiny concentrations (< 0.5 pM)
assemble mainly within the N-range of the hook curve.

Hook-characteristics of GeneChips of different generations (see figure, from left to the right)Figure 3
Hook-characteristics of GeneChips of different generations (see figure, from left to the right). The chips are hybridized with 
mRNA extracts from tumour samples (thyroid nodules, two parts on the left; [9] and references cited therein) and from the 
Universal Human Reference RNA (chips c and d; see [10] for details). The figures show the raw hook (below), the corrected 
hook (middle), the probability density distribution (middle, right axis) and the theoretical curve fitted of the mix-, S- and sat-
ranges of the corrected hook curves (above). The percentage of absent probes (%N) is given within the figures.
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Figure 6 compares the absent call rates for the spikes
obtained from the hook and MAS5 methods which both
show similar results. The probability of flagging a probe
absent increases upon decreasing transcript concentra-
tion. The absent rate thus reflects the resolution limit of
the method for detecting small transcript concentrations.
The vertical shift between the MAS5 and hook data can be
adjusted by changing the threshold-parameters used in
both methods.

The fit of the hook-equation provides the S/N-ratio R for
each set of spiked-in probes which linearly correlates with
the spiked in concentration (Figure 6, lower panel). The
vertical axes in this figure show that the largest spike-con-
centration (512 pM) corresponds to a S/N-ratio of R≈ 200

(left axis) and to the specific binding strength of XS ≈ 1
(right axis). Comparison of the absent rates with the S/N-
ratio indicates that the threshold for present calls refers to
R ≈ 0.1 – 2 and to a binding strength for specific hybridi-
zation of XN ≈ (0.5 – 5) 10-3 (see dashed arrows in Figure
6). Hence, the relevant measuring range of R and XN cov-
ers about three orders of magnitude.

Expression estimates
The hook-methods provides potentially four alternative
expression measures of each probe set: the S/N-ratio R,
which is obtained from the direct fit of the transformed
two-species Langmuir isotherm to the hook curve; and
PMonly, MMonly and PM-MM-difference estimates
which are calculated as the mean generalized logarithm of

Present/absent characteristics of two hybridizationsFigure 4
Present/absent characteristics of two hybridizations. Left part: The Yeast Genome 2.0 (YG 2.0) array contains about 50% 
probe sets designed for S. cerevisiae and S. pombe each. The hook refers to a chip hybridized with RNA taken from S. cerevi-
siae [13]. The hooks are calculated either for all probes or masking the probes of one of the two yeast species. The lower part 
shows the respective signal-density distributions. The added transcripts of S. cerevisiae give rise to virtually absent probes of S. 
pombe in the N-range of the hook curve. The relative amount of S. cerevisiae-probes called absent (red) and of S. pombe-
probes called present (blue) are given within the figure. Right part: Hook curves for a DG1-chip taken from the Golden Spike 
series which has been hybridized with a definite collection of "spiked"-transcripts. The selective masking of the spikes and of 
the remaining "empty" probes shows that these probes accumulate in the S- and N-region, respectively. The relative amounts 
of empty probes called present and of spiked probes called absent are given in the figure.
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the background- and sensitivity corrected and de-satu-
rated signal values averaged over the background distribu-
tion. The corrections for the latter three expression values
are estimated from the hook-curve analysis. Figure 7 com-
pares the performance, accuracy and precision of the dif-
ferent alternative measures in terms of their correlation
with the known spiked-in concentration. The precision
reflects the scattering of the estimated data about their
mean and was therefore estimated as the respective coeffi-
cient of variation. The accuracy reflects the systematic
deviation of the estimated from the spiked concentration.
Hence, it was quantified as the ratio of the estimated con-
centration and the known concentration of the spikes. For
sake of comparison we also show RMA (robust multiarray
analysis, [15,16]) expression estimates in Figure 7.

It turns out that all considered methods except MMonly
are comparably precise at larger transcript concentrations
csp-in > 2 pM, at which the transcripts are safely called
present (see previous paragraph). Note that the direct fit
of the hook equation to the data provides the S/N-ratio
which represents only a rough measure of the expression
degree. The PMonly and PM-MM estimates more precisely
correct the signals for the non-specific background contri-
bution. It does therefore not surprise that these measures
outperform the S/N-ratio R at smaller csp-in-values in terms
of precision. The MMonly expression values are by far the
most imprecise ones which does not surprise because the
specific signal level and thus the sensitivity of the MM-
probe intensities are smaller by nearly one order of mag-
nitude compared with the respective PMonly and PM-MM
measures at a comparable non-specific background level.
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Genelogic dilution experiment: Hook curves for different dilution steps (upper panel), the fraction of absent probes (middle panel) and concentration measures (S/N-ratio and specific binding strength, lower panel) as a function of the amount of added RNAFigure 5
Genelogic dilution experiment: Hook curves for different 
dilution steps (upper panel), the fraction of absent probes 
(middle panel) and concentration measures (S/N-ratio and 
specific binding strength, lower panel) as a function of the 
amount of added RNA. The dilution of the hybridization 
solution shifts the increasing part of the hooks to the left and 
increases its width. The width is inversely related to the non-
specific binding strength, ~-log XN, which consequently 
decreases upon dilution. The horizontal dotted lines in the 
upper part indicate the levels of different S/N-ratio (R); the 
dashed parabola-like curves are fits of the Langmuir-hybridi-
zation model. The hook method provides a virtually constant 
fraction of absent probes which corresponds to the essen-
tially invariant S/N-ratio of the probes upon changing dilu-
tion. Contrarily, MAS5 provides an increasing fraction of 
absent probes (see middle panel). The lower part compares 
the S/N-ratio of selected probes which remain virtually con-
stant upon dilution with the binding strength which progres-
sively decreases (compare lines and solid symbols in the 
lower part; the diagonal lines refer to the right coordinate 
axis).
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The coefficient of variation of the MMonly expression esti-
mates exceeds CV > 2 over the whole concentration range
which exceeds the maximum scaling used in Figure 7.

The hook-measures clearly outperform the RMA-values in
terms of the accuracy of the expression values. Note that
RMA uses a linear intensity approximation which ignores
saturation at high transcript concentrations at one hand-
side and corrects the intensities for non-specific hybridiza-
tion using a global background level on the other hand-
side. As a consequence, RMA systematically underesti-
mates the change of the expression values especially at
high and small transcript concentrations (see also [5] for
a detailed discussion). Note that RMA represents a multi-
chip- method which processes a series of chips to adjust
the probe-specific sensitivities. In contrast, the hook
method provides strictly single-chip estimates which are
based on the intensity information of only one particular
chip. The accuracy of the PM-MM estimates perform best
among the methods at small transcript concentrations
presumably because the explicit use of the MM intensities
well corrects for sequence-specific background effects not
considered by the positional dependent sensitivity model
used by the hook method.

In this context we explicitly refer to the so-called effect of
"bright" MM, i.e. a certain amount of about 40–50% of
negative PM-MM intensity differences on each chip

Affymetrix spiked-in experiment: The upper panel shows the hook obtained from one chip of this seriesFigure 6
Affymetrix spiked-in experiment: The upper panel shows the 
hook obtained from one chip of this series. The predominant 
number of probes is hybridized with RNA of a HeLa-cell 
extract which was added to the chips to mimic a complex 
hybridization background (thick blue curve). The spike-probe 
sets are indicated by the open symbols and the respective 
transcript concentrations (see the numbers, the concentra-
tions are given in units of pM). The horizontal distance 
between a spike position and the end point is related to the 
logarithm of the specific binding strength. The turning point 
between the N- and the mix-ranges defines the threshold for 
present probes. The dashed line is the fit of the Langmuir 
hybridization model to the data. The middle and lower parts 
show present/absent characteristics and the S/N-ratio of the 
spikes, respectively. The fraction of absent probes and the S/
N ratio were calculated as mean values over all 42 chips of 
the experimental series (see thick lines). The open circles in 
the lower part show the individual probe-set values and thus 
the scatter of these points about their mean value. Spiked 
probes with nominal concentrations larger than 2 pM are 
"safely" called present. The S/N-ratio linearly correlates with 
the spiked-in concentration. The right axis of the lower part 
scales the expression estimates in units of the binding 
strength. The green dashed lines indicated that the threshold 
for calling probes as present corresponds to S/N-ratios R ≈ 
0.1 – 2 and the S-binding strength of XN ≈ (0.5 – 5) 10-3.
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[17,18]. This systematic bias has been explained by the
intrinsic purine-pyrimidine asymmetry of base pairings in
the non-specific DNA/RNA probe/target duplexes
[14,19,20]. The sensitivity correction used by the hook
method explicitly corrects the raw intensity data for this
sequence effect.

Reproducibility across GeneChip-generations
Up to now a large number of microarray data has been
collected in public repositories such as GEO (Gene expres-

sion Omnibus of NCBI) or ArrayExpress (EBI) referring to
a wide variety of different conditions, specimen and array-
types. One important challenge in microarray analysis is
to take full advantage of these previously accumulated
data, e.g., for combining different datasets to get a more
comprehensive view in comparative analyses. Difficulties
related to the heterogeneous character of array platforms,
chip types and hybridization protocols in most cases
hinder such meta-analyses. Consistencies and inconsist-
encies between chip platforms and -types have been pre-
viously addressed in a number of studies [21-25].

A recent study reports that even identically composed
probe sets containing identical numbers and sequences of
probes on different GeneChip-types can produce signifi-
cantly different values of gene expression in cross-chip
comparisons for samples containing the same target RNA
[10]. Particularly, this study compares the newer HG-
U133 plus 2.0 (P-chip) with the previous-generation HG-
U133A (A-chip) array. The nearly 55.000 probe sets of the
former chip integrate the more than 22.000 probe sets of
the HG-U133A chip and, in addition, the probe sets of the
HG-U133B array. In the study both, the A- and P-arrays
were hybridized with the same Universal Human Refer-
ence RNA.

For subsequent comparison of the expression values the
authors masked the additional probe sets on the P-chip
("not A"-probes) and processed only the common probe
sets present on both chips ("A"-probes) using MAS5 and
a combination of global and invariant-set normalizations
(see ref. [10] for details). The analysis revealed a number
of differentially expressed genes which is much larger than
the number expected by chance despite the identical
probes and target RNA.

Figure 8 compares the expression values of four probe sets
selected by Zhang et al. as representative examples ranging
from small to high expression levels to illustrate the bias
caused by the chip-types (see also Fig. 3 in ref. [10]). Note
that the difference between the expression values of both
chip-types inverses sign upon increasing expression sug-
gesting that simple re-scaling of the data does not solve
the problem.

We re-analyzed these chip-data using the hook-method.
The left part of Figure 8 shows that the systematic differ-
ence between the chip-types essentially disappeared at
small expression levels and it is clearly reduced compared
with the data of Zhang et al. at larger expression levels.
Parallel analyses which either consider or not consider the
not A-probes provide virtually the same results (data not
shown). We tentatively attribute this improvement to the
sequence correction of the intensities and to the proper
estimation of the non-specific background correction.

Expression estimates (upper panel, see figure for assign-ment), their coefficient of variation and the ratio of the esti-mated and the experimental ("true") spiked concentration (lower panel) as a function of the spiked concentrationFigure 7
Expression estimates (upper panel, see figure for assign-
ment), their coefficient of variation and the ratio of the esti-
mated and the experimental ("true") spiked concentration 
(lower panel) as a function of the spiked concentration. The 
latter two measures estimate the precision and the accuracy 
of the expression values, respectively. The expression esti-
mates in the upper panel are scaled to agree with the diago-
nal (dashed) line which refers to perfect results. The perfect 
precision and accuracy refer to zero (no scattering, middle 
part) and unity (lower part), respectively. All values are aver-
aged over all probe sets detecting spiked transcripts. The fig-
ure compares the performance of the hook expression 
estimates (PMonly, MMonly, PM-MM and R) with that of 
RMA (see text).

�
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In the next step we compare the hook-curves of the P- and
A-chips to identify possible differences of their hybridiza-
tion characteristics. Examples of raw and corrected hooks
taken from this series are shown in Figure 3 (see the two
parts on the right). In Figure 9 we re-plotted the corrected
hooks and the density distributions for direct comparison.
The characteristics of the P-chip were calculated using
either all probes or the two subsets of probes shared (A-
probe sets) and not-shared (not-A-probe sets) with the A-
array. All hook versions fit well to the theoretical function.
Table 3 summarizes the extracted parameter values.

The widths of the hooks and thus the respective level of
non-specific binding are virtually the same for the P- and
A-arrays. The not-A-probe sets are, on the average, dis-
tinctly less expressed than the A-probe sets as indicated by
the more than twice as large amount of absent probes
(%N = 64% versus 29%) and the smaller decay rate of the
respective density distribution (λ = 0.45 versus 0.65). The
percentage of absent probe sets on the P-chip (50%) rep-
resents the average of the respective contributions of A-
and not-A-probes where the not-A-probes obviously add
a considerable larger amount than the A-probes. The total
density distribution of the P-chip well agrees with the dis-
tribution of the not-A-probes in the N-range and with that
of the A-probes in the S- and sat-ranges. In summary, the
hybridizations on both chips well agree in terms of the
general target properties (N-background, decay rate) but
differ with respect to the general probe characteristics
(%N). The latter effect simply reflects the different probe-
selections of the manufacturer for each chip type.

Besides these essentially common characteristics, the
hook-analysis revealed one significant difference between
the chip types, namely the significantly increased height
parameter α for the A-chips. This parameter characterizes
the PM/MM-gain of the specific signals, or, in other
words, the mean incremental effect of introducing one
central mismatch into specific probe/target duplexes.
Here one expects however virtually identical α-values for
the A- and P-chips because the mismatch design and the
nominal probe length are identical for both array-types.
On the other hand, subtle deviations from the nominal
probe design owing to deficiencies of fabrication and/or
variations of the hybridization conditions in different
preparations can however affect the observed maximum
PM/MM ratio: For example, the in-situ synthesis of the
GeneChip probes usually produces a non-negligible frac-
tion of truncated probe-oligomers not synthesized to full
nominal length. This effect gives rise to systematic devia-
tions from the Langmuir isotherm and, more importantly,
it will affect the PM/MM-gain because the relative effect of
one middle-mismatch is expected to increase with
decreasing length of the probe oligomers [26,27]. Also the
post-hybridization washing step upon chip preparation is
expected to affect the apparent PM/MM-ratio and the
binding law as well [28,29]. We suggest that subtle differ-
ences of the hybridization law due to details of chip-man-
ufacturing and/or handling of the chips upon preparation
as well as evolving instrumentation and instrument proto-
cols give rise to slightly biased expression data between
different array types and/or different batches of chips of
the same type. The latter conclusion was derived from
another chip series for which we observed a reversed rela-
tion of the PM/MM-gain, namely a larger value for the P-
array compared with the A-array [5] (see also the two A-
chips in Figure 3). Selected hook parameters can serve as

Cross-chip comparison of the expression estimates of four selected probe sets taken from the HG-U133A and HG-U133plus2 arrays (chip data were taken from [10])Figure 8
Cross-chip comparison of the expression estimates of four 
selected probe sets taken from the HG-U133A and HG-
U133plus2 arrays (chip data were taken from [10]). Both 
chip types were hybridized with human reference RNA in 
five replicates (solid symbols). The open symbols are the log-
means over the replicates. Expression measures taken from 
ref. [10] were compared with the four alternative measures 
provided by the hook-method. Note the systematic shift of 
the expression values between both different chip-types 
which changes sign upon increasing expression value. The 
chip-type specific bias considerably reduces for the hook-
measures. The MMonly-method performes worst among the 
hook-methods. (see also Figure 7). The Zhang-measures are 
given in arbitrary units which were scaled for comparison 
with the hook data.
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indicators of such effects and can provide hints for their
origin.

Updated probe sets
One possible approach to partially level out chip-type spe-
cific differences is the matching of the probe sets of differ-
ent array types using genomic sequence information
updated with respect to the original probe set assignment
of the manufacturer. Recent studies show that significant
percentages of existing GeneChip probe set definitions are
no longer consistent with gene and transcript assignments
in actual versions of public databases. The probe identity
issue is of critical importance, as it significantly affects the
expression values summarized on probe set level and thus
their interpretation and understanding [30,31]. Dai et al.
[30] performed reanalysis of probe and probe set annota-
tions resulting in publicity available, regularly updated
probe set definitions for most of the GeneChip-types. A
series of probe selection and grouping criteria utilizing the
latest sequence and annotation information taken from
databases such as REFSEQ or ENSEMBLE (gene, transcript
and exon based) are applied. (i) This filtering removes

"bad" probes either without or with multiple perfect
match hits along the genomic sequence and, (ii) it re-
arranges "redundant" probe sets addressing the same
gene, transcript or exon into one probe set. The resulting
updated probe sets contain variable numbers of probes
ranging from four to more than thirty. The mean probe set
size is increased for gene- and transcript related sets (e.g.,
for the HG-U133A array: ENSEMBLE(gene)~14.9;
ENSEMBLE(transcript)~13.9; Refsequ~14.9) and
decreased for exon-related sets (ENSEMBLE(exon)~9.3)
compared with the original Affymetrix set definition
(NetAffx~11.1).

In Figure 9 and Table 3 we compare the hook characteris-
tics for different probe set definitions. All updated probe
set definitions under consideration give rise to very simi-
lar hook curves which essentially also agree with that
obtained from the original probe set-assignments. This
result again shows that the expressed probe sets follow the
same hybridization law where changes of their perform-
ance will change their position along the hook. Interest-
ingly, also the decay rates of the density distributions and

Table 3: Hook characteristics of HG-U133A and HG-U133plus2 chips hybridized with the same RNA using different probe set 
definitionsa)

probe set 
definition

chip-type Optical 
BG

non- 
specific BG

N-binding 
strength

PM/MM- 
gain (S)

PM/MM-
gain (N)

mean 
S/N-index

mean 
expression 

index

percent 
absent

probe 
utilizationd)

logO logN β α logn <λ> <φ> %N %P
# of probe sets

Affymetrix probe setsb)

total HG- U133A 1.89
± 0.04

1.71
± 0.04

2.70
± 0.04

0.99
± 0.03

0.10
± 0.01

0.61
± 0.03

2.09
± 0.05

34
± 3

100%
22,193

total HG- U133plus2 1.81
± 0.04

1.65
± 0.08

2.75
± 0.07

0.85
± 0.01

0.07
± 0.01

0.57
± 0.03

2.18
± 0.07

50
± 3

100%
54,585

A HG- U133plus2 1.82
± 0.06

1.63
± 0.08

2.76
± 0.07

0.86
± 0.01

0.09
± 0.01

0.65
± 0.05

2.11
± 0.07

29
± 3

41%
22,187

notA HG- U133plus2 1.80
± 0.06

1.67
± 0.09

∞ 0.83
± 0.01

0.06
± 0.01

0.45
± 0.03

x 64
± 5

59%
32,308

Customized probe setsc)

Ensemble gene HG- U133A 1.89
± 0.05

1.71
± 0.03

2.77
± 0.02

0.97
± 0.03

0.12
± 0.003

0.56
± 0.03

2.21
± 0.04

23
± 3

68%
11,834

HG- U133plus2 1.82
± 0.06

1.61
± 0.09

2.74
± 0.07

0.84
± 0.01

0.08
± 0.02

0.56
± 0.05

2.18
± 0.07

21
± 3

48%
17,215

Ensemble 
transcript

HG- U133A 1.88
± 0.05

1.71
± 0.03

2.67
± 0.05

0.95
± 0.03

0.10
± 0.01

0.57
± 0.03

2.10
± 0.05

19
± 1

71%
23,740

HG- U133plus2 1.81
± 0.06

1.65
± 0.09

2.68
± 0.07

0.79
± 0.11

0.04
± 0.09

0.57
± 0.04

2.08
± 0.07

18
± 11

48%
33,977

Ensemble Exon HG- U133A 1.88
± 0.05

1.69
± 0.04

2.64
± 0.06

-0.97
± 0.02

0.11
± 0.01

0.58
± 0.03

2.06
± 0.06

23
± 3

63%
22,299

HG- U133plus2 1.81
± 0.06

1.62
± 0.08

2.72
± 0.13

0.84
± 0.01

0.09
± 0.01

0.57
± 0.06

2.15
± 0.15

25
± 5

43%
34,541

Refseq HG- U133A 1.88
± 0.05

1.68
± 0.06

2.64
± 0.07

0.96
± 0.02

0.09
± 0.02

0.60
± 0.05

2.04
± 0.07

17
± 3

72%
17,531

HG- U133plus2 1.83
± 0.06

1.67
± 0.08

2.65
± 0.12

0.83
± 0.01

0.09
± 0.01

0.61
± 0.05

2.04
± 0.12

27
± 7

48%
25,004

a) Raw intensity data were taken from ref. [10]; human reference RNA has been hybridized onto both chip types in 5 replicates. The data are log-averages/±SE
b) Probe set definition of the manufacturer; total...all probe sets; A/notA...probe sets shared/not shared between the P- and A-chips
c) Customized probe sets were filtered using genomic information provided by Ensemble (gene, transcript or exon related) and Refsequ (see [30]); probe set definitions were 
downloaded from http://brainarray.mbni.med.umich.edu (version 10) as CDF and probe-sequence files
d) Percent and total number of the probes on the respective chip which are used in the respective analysis. Note that the number of probes per set varies between 4 and more 
than 30 for the customized sets. The data are taken from http://brainarray.mbni.med.umich.edu
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the mean expression index <φ> of about 2.1 are very sim-
ilar for all considered cases. This result indicates that the
expression degrees of present probe sets located in the
mix-, S- and sat-ranges of the original hooks remain, on
the average, essentially unchanged after updating the
probe sets.

The amelioration of the probe sets masks out a certain
amount of "bad", i.e. falsely annotated or ambiguous
probes and merges redundant probe sets (see above). As a
consequence, the fraction of absent probe sets notably
decreases from 34% (A-chip) and 50% (P-chip) to about
20% in both cases (see Table 3). The percentage of probe
utilization inversely correlates with the reduction of the
amount of absent probes detected by the hook method
between the original and updated probe sets (see Table 3).
For example, about 70% probes of the A-chip but only
50% of the P-chip are used after updating the gene-anno-
tations. The obtained common percentage of absent
probe sets of 20% reflects the consistent filtering criteria
applied to both chip types. Indeed, the verification of
probe sets based on genomic sequence data comes out

with similar percentages of modified and not-modified
probe sets sharing the same target in the original and
updated probe set definitions.

In summary, the verification of probe sets increases the
amount of the probe sets detected as present ones on one
hand. Hence, the hook-calling criterion automatically
removes the "bad" probe sets from further analysis. On
the other hand, the mean expression degree and the
hybridization characteristics reported by the ensemble of
probes synthesized on the chip remain virtually unaf-
fected by the redefinition step. Comparison of the
updated expression measures of the slightly diverging
probe sets shown in Figure 8 after verification leaves the
small systematic biases essentially unchanged (data not
shown).

4. Hybridization control
Assessment of data quality is an important component of
the analysis pipeline for gene expression microarray
experiments. Essentially all steps of RNA-preparation
(extraction, amplification, in-vitro transcription, label-

Signal distributions (below) and corrected hook curves (above) of Universal Human Reference RNA hybridized on HG133A and HG133plus2 GeneChips (raw data were taken from [10])Figure 9
Signal distributions (below) and corrected hook curves (above) of Universal Human Reference RNA hybridized on HG133A 
and HG133plus2 GeneChips (raw data were taken from [10]). The probe sets are composed either according to Affymetrics 
default settings (left part and "Affy" in the other parts), or using different customized transcript definitions (see ref. [30]; ver-
sion 10; middle and right part) based on the annotations of different resources: ENSEMBLE (ENSG, ENSE, ENST), REFSEQ (see 
text). The probe sets of the HG133plus2 array were split into two subgroups which are either represented on both chip-types 
("A") or on the P-chip only ("notA"). See the legends within the figure. The respective number of probe sets per array is given 
within the parentheses. The dotted lines in the lower panel serve as guide for the eye to characterize the respective decay con-
stants λ. The hooks in the left part and the "Affy" hooks in the other parts are shifted in vertical direction each to another for 
sake of clarity. The dotted curves in the upper panel are fits of the hook-equation. The essential parameters are given in Table 
3.
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ling), hybridization, washing and signal detection can
have significant effects on the extracted "apparent" expres-
sion values seen between different samples with conse-
quences for subsequent downstream applications. There
are, for example, "technical" factors associated with the
correction for background fluorescence owing to bleed
over-effects from surrounding probes on the arrays [32],
or to spatial artefacts [33,34]. Another kind of effects are
linked with the RNA integrity and the used amplification
and labelling protocols [35-39]. In this section we demon-
strate the potential of the hook-analysis to detect and to
estimate variations of the data owing to RNA-quality, the
effect of substitution of cRNA by cDNA and of the label-
ling protocol.

RNA-amplification bias
The amplification step of cRNA-preparation uses reverse
transcriptase primers starting from the 3' -end of the orig-
inal mRNA resulting in a population of 3' -biased, trun-
cated transcript fragments. This 3'-overrepresentation
gives rise to the systematic lowering of signal-intensities
when the position of the probes shifts towards the 5'-end
[35,40,41]. Hence, the probes designed for detecting one
and the same transcript apparently report a progressively
decreasing expression degree with increasing distance
from the 3'-end of the transcripts. This is potentially detri-
mental for the expression value of the probe set summa-
rized from individual probe-level data.

To illustrate the consequences of the 3'-biased amplifica-
tion on the hook-data we ranked each probe in each
probe set according to its position from the 3'-end, calcu-
lated the Δ- and Σ-coordinates as average value over
probes no. #1 – #4 (subset more closely to the 5'-end), #8
– #11 (subset more closely to the 3'-end) and #1 – #11
(total probe set) and presented the hook-plots, the density
distributions and the total Σ-coordinates as a function of
the "sub-Σ-values", Σsub in Figure 10. This approach con-
siders the sequential ordering of the probes as a rough
measure of their actual position along the respective gene
to estimate the mean effect of the 3'-biased transcript pop-
ulations on the hook-characteristics.

As an example, the figure compares two biological repli-
cates A and B of total RNA prepared from rat muscle
hybridized on rat genome RG-230 GeneChip arrays.
Before microarray analysis RNA integrity and concentra-
tion was examined on an Agilent 2100 Bioanalyzer (Agi-
lent Technologies, Palo Alto, CA, USA) using the RNA
6.000 LabChip Kit (Agilent Technologies) according to
manufacturers instructions. Quantification of 28S and
18S ribosomal RNA before target amplification using the
T7-protocol (see [42,36] and [43] and references cited
therein) revealed virtually equal RNA quality from both

preparations according to the 28S/18S-ratios of 1.45
(sample A) and 1.43 (B).

Figure 10 (upper part) correlates the total probe set aver-
age of the probe intensities, Σ, with that of the subsets,
Σsub. In the N-hybridization range both sub-averages agree
each with another. This result is plausible because the 3'-
bias due to incomplete amplification of full-length tran-
scripts applies per definition only to specific hybridiza-
tion: Non-specific transcripts are not-specified with
respect to their position relative to the 3'-end and thus
they on the average hybridize equally to all probes regard-
less of their relative position. Upon increasing mean
intensity-values Σsub and Σ, the curves however split into
two branches starting with the onset of specific binding.
The 3'-biased sub-average exceeds that of the 5'-biased
one by a factor of 3.7 (sample A) and 1.9 (sample B) in the
S-range. This difference indicates the more uniform
amplification in sample B providing a higher yield for
longer transcripts. Note that the observed onset of the
split between the 3'- and 5'-branches well agrees with the
position of the break of the respective hook curve (see ver-
tical dotted line). This type of analysis thus once more
confirms the chosen break-criterion to estimate the
boundary between the N- and mix-hybridization ranges
along the hook curve.

The total hook and the 3'- and 5'-"subhooks" of each sam-
ple are well described by the same theoretical function
using a common set of parameters (see middle panel in
Figure 10). To a good approximation, all probes obey the
same hybridization law irrespective of their position rela-
tive to the 3'-end and irrespective of their amplification
yield. The intensities of the probes near the 3'-end how-
ever cover a larger Σ-range compared with the respective
5'-biased subset. This effect is manifested by the larger
decay constant λ of the signal distribution of the 3'-biased
probes compared with that of the 5'-biased probes as illus-
trated in the lower part of Figure 10. The larger λ indicates
the better (specific) signal to non-specific background (S/
N)-ratio: the average specific signal level is larger in units
of the detection limit which is roughly given by the non-
specific background. The 3'-subset is also characterized by
the larger values of the (negative-logarithmic) expression
index φ. It reflects the larger average strength of specific
binding owing to the larger fraction of specific full-length
transcripts.

The smaller 3'/5'-ratio in the S-range, the smaller expres-
sion index and the larger decay constants, λ, of sample B
compared with sample A reveal a generally larger fraction
of specific transcripts due to more complete amplification
and thus a better RNA-quality. The hook-analysis also
reveals that the larger fraction of full length transcripts in
sample B is accompanied by a slightly smaller width of the
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hook and a smaller fraction of absent probes (see middle
panel of Figure 10). The latter trend can be simply attrib-
uted to the fact that the mean occupancy of the probes
with specific transcripts and thus the specific signal
increases if one improves the RNA-quality in terms of

longer transcripts. Note that the increase of the decay con-
stant upon RNA-improvement means that the probe sets
on the average shift towards the S-range of the hook-
curve. This trend is accompanied by a reduction of the per-
centage of absent probes from 54% to 42%. MAS5-analy-

3'/5'-bias of two replicated hybridizations A (left part) and B (right part) of RNA of different quality on the rat genome array RAE-230: The graph above, in the middle and below show the total log-averaged mean of the PM- and MM-intensities, Σ, taken over all 11 probe-pairs of each set, the hook curves and the signal distributions, respectively, as a function of the sub-mean, Σsub, averaged over subsets of the first four probes of a probe set (probes no. 1–4) closer to the 5'-end of the transcripts and the last four probes (no. 8–11) nearer to the 3'-end of the transcriptsFigure 10
3'/5'-bias of two replicated hybridizations A (left part) and B (right part) of RNA of different quality on the rat genome array 
RAE-230: The graph above, in the middle and below show the total log-averaged mean of the PM- and MM-intensities, Σ, taken 
over all 11 probe-pairs of each set, the hook curves and the signal distributions, respectively, as a function of the sub-mean, 
Σsub, averaged over subsets of the first four probes of a probe set (probes no. 1–4) closer to the 5'-end of the transcripts and 
the last four probes (no. 8–11) nearer to the 3'-end of the transcripts. The 5'- and 3'-biased sub-means virtually agree in the N-
hybridization range whereas upon specific hybridization the 3'-biased sub-mean exceeds that of the 5'-biased one owing to 3'-
biased amplification of RNA (upper panel, see arrows, the factors indicate the fold changes of the 3'-end relative to the 5'-end). 
The dimensions of the different hooks calculated using either all probes (1–11) or the biased subsets roughly agree each with 
another showing that all probes follow virtually the same hybridization law (middle panel). The higher yield for RNA fragments 
near the 3'-end of the transcripts gives rise to larger decay constants λ if one plots the signal-density as a function of the Σsub-
coordinate of the respective subsets of probes (see lower part, φ is the respective mean negative logarithmic expression 
index). The 3'/5'-bias is larger for sample A shown in the left column of the figure. Note that the width of the respective hooks 
and the fraction of absent probes (42% versus 54%, see figure) increase upon decreasing RNA-quality (compare A with B). The 
open circles in the middle panel indicate the positions of the GADPH-probe sets used typically for 3'/5'-hybridization control. 
The left one in each hook refers to the 5'-biased set and the right one to the 3'-biased set.
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sis provides a similar difference of the amount of absent
probes with 63% and 53% for the A- and B-samples,
respectively.

The narrowing of the hook upon improvement of RNA
quality, indicates a larger relative amount of non-specific
binding. This trend seems peculiar because one might
expect that the larger amount of specific transcripts
reduces the amount of non-specific binding. However, the
more efficient amplification step in sample B results in a
higher total number of full length transcripts and/or in a
larger binding constant for non-specific binding and thus
in an increased binding strength of non-specific binding
which, in turn, gives rise to the increased level of cross-
hybridization as indicated by the slightly narrower hook-
curve. Note however that the decreased quality of the
RNA-amplification only weakly shifts the rising branch of
the hook curve, in contrast to the overall dilution effect
shown in Figure 5.

Microarrays of the GenChip-design contain special probe
sets for estimating the 3'/5'-amplification bias. They refer
to relatively long transcripts such as β-actin and GADPH
with probe sets targeting the transcription of their 3'-,
mid- (m), and 5'-regions. Small 3'/5'-signal ratios are gen-
erally thought to indicate small amplification bias and
thus good amplification quality.

Figure 11 compares the hook-coordinates (Σ and Δ) and
two expression measures (MAS5 and hook/PMonly) of
the three GADPH-probe sets in both samples. The inten-
sity-related Σ-values of the different probe sets only mar-
ginally differ for sample A "pretending" this way better
RNA-quality than for sample B with markedly larger 3'-
values (see the fold changes above the bars: 1.6×-versus-
11× for A and B, respectively). Comparison of the Σ-values
with the break criterion however clearly indicates that the
GADPH-signals of sample A are dominated by non-spe-
cific hybridization which was shown to level-out 3'/5'-
expression differences (see also the open circles in the
middle panel of Figure 10 which indicate the position of
the 3'- and 5'-probe sets of GADPH along the hook curve).
Note that both, the 5'- and m-sets of sample A are called
absent by the hook method. Contrarily, all GADPH-sets
are present in sample B. Their 3'/5'-ratio consequently can
be attributed more reliably to the amplification bias
whereas that of sample A simply reflects the virtual
absence of GADPH-transcripts. Note that the expression
values calculated by MAS5 and, to an even larger degree,
hook (PMonly) reflect drastically increased 3'/5'-ratios
owing to the N-background correction. Note also, that the
3'/5'-ratios of the GADPH-probe sets of sample B exceed
that of the sub-hooks in the S-range (11×-versus-1.9×, see
Figure 10). This difference simply reflects the longer tran-
script regions interrogated by the entire set of GADPH-
probes compared with the mean transcript-length probed

by the subhooks. Analysis of the alternative β-actin con-
trol set provides analogous results (data not shown).

In summary, the 3'/5'-ratio of the respective control probe
sets are obviously insufficient for judging the amplifica-
tion bias because non-specific hybridization keeps the sig-

Characterization of the 3'/5'-amplification bias for the two samples shown in Figure 10 using the GADPH-probe sets Affx_rat_GADPH_x_at with x = 3', m and 5'Figure 11
Characterization of the 3'/5'-amplification bias for the two 
samples shown in Figure 10 using the GADPH-probe sets 
Affx_rat_GADPH_x_at with x = 3', m and 5'. These three 
sets probe the GADPH-transcript with increasing distance 
from the 3'-end. The bars show the log-averages of the PM 
and MM intensities after correction for the optical back-
ground over the respective probe sets (Σ) and the MAS5 and 
hook (PMonly) expression estimates. The horizontal line 
indicates the hook-coordinate of the break, Σbreak with Σ ≥ 
Σbreak called present (P) and Σ < Σbreak called absent (A, see 
also the middle panel of Figure 10). Note that the Σ-signal of 
GADPH in sample A is dominated by non-specific hybridiza-
tion at least for the m- and 5'-probes whereas it contains a 
much larger specific contribution in sample B. The fold-
changes of the 3'/5'-signals are given above the 3'-bars. The 
circles indicate the respective Δ-coordinate of the hook-
curve referring to the right axis.
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nal of the 5' probe set at the same level as that of the 3'
probe set which misleadingly pretends good amplifica-
tion quality. Consideration of the hook-coordinates of
these probes and, more reliably, analysis of 3'-biased
"sub-hooks" enables the separation of the N- and S-
hybridization ranges and this way a clear identification of
the 3'/5'-amplification bias.

Tissue specific RNA quality and normalization of 
microarray data
Measurement of gene expression is based on the assump-
tion that an analyzed RNA sample closely represents the
amount of transcripts in vivo. Transcripts show stability
differences of up to several orders of magnitude raising
the possibility that partial degradation during cell lysis
and sample preparation causes a transcript-specific bias in
the expression measures in addition to the amplification
bias discussed in the previous section [37]. Different RNA
quality measures, such as the 28S/18S ratio, the RNA
integrity number (RIN) or a degradometer-score have
been developed, verified (see [43] and references cited
therein for an overview) and related to different microar-
ray hybridization characteristics [36,39,42]. It was shown
that the decrease in RNA integrity is often paralleled by
the decrease of the percentage of present calls [37,39]
which implies the reduction of the expression degree for
degraded transcripts. Other studies however reveal more
puzzling results, either with virtually no effects of degra-
dation on expression or with opposite correlations
between RNA-quality and weak and strong signals where
the former ones increase and the latter signals decrease the
worse the RNA becomes [38].

The integrity of the RNA extracted from different tissues
systematically depends, among other factors, on the type
of the tissue possibly and partly because of variations of
the content and the activity of ribonucleases [37,39]. Esti-
mation of RNA-quality and, if possible, appropriate cor-
rection for tissue-specific biases are thus essential steps in
establishing tissue-specific expression profiles.

In Figure 12 we compare the hybridization characteristics
of different tissues. The raw array data are taken from the
comparative expression study on 79 human tissues [44].
All hybridizations use the same start-amount of 5 μg of
total RNA and the same amplification, hybridization and
labelling protocols. Part a of Figure 12 shows the distribu-
tions of the amount of absent calls obtained using MAS5
and hook-method for all considered tissues. The possible
percentage of absent probe sets widely varies from values
greater than 95% (virtually no present genes) to ~40%
(hook) and ~10% (MAS5). Except their different spread,
both distributions show essentially the same structure
which reflects strong correlations between the MAS5 and

hook calls in agreement with our previous findings (see
above).

For more detailed analysis we select two samples with rel-
atively large and small percentages of absent probe sets,
the RNA of which were extracted from superior cervical
ganglion cells (scg) and from periphal blood/dentritic
cells (dc) (see arrows in Figure 12a), respectively. Com-
parison of the respective intensity distributions indicates,
except the slightly divergent width, no striking differences
(see Figure 12b). In contrast, the respective hook-plots
and underlying signal-distributions shown in part c and d
of Figure 12 reveal completely different hybridization
characteristics: Most of the probe sets of the scg-hybridiza-
tion accumulate within a relatively narrow Σ-range corre-
sponding mainly to the N- and partly to the mix-
hybridization regimes whereas the probes sets of the dc-
sample cover a much wider range which includes the S-
and sat-hybridization regimes as well.

The different shapes of the hook curves cannot be
explained by a smaller amount of RNA (e.g. due to a
smaller yield of cRNA synthesis), less-efficient labelling
and/or suboptimal calibration of the scanner. In these
cases one expects the shift of the "whole" hooks without
considerable change of their width and decay of the den-
sity distribution (compare, e.g. with Figure 5, upper part).
Instead, the hook of the scg-sample is distinctly reduced in
width reflecting the much higher level of non-specific
background hybridization paralleled by the reduction of
the decay constant.

The hook-coordinates of selected probe sets are high-
lighted by symbols in Figure 12 to illustrate this result:
The symbols refer to probe sets selected to cover essen-
tially the N-, mix-and S-hybridization regimes of the dc-
hook. In the scg-hook most of these sets shift towards, and
partly behind the detection limit given by the break-crite-
rion. The solid symbols refer to amplification (GADPH-3'
and -5') and hybridization (BioB-3) controls. The hori-
zontal shift between amplification controls (see the solid
triangles, the left one refers to the 5'- and the right one to
the 3'-probe set) suggests a slightly smaller amplification
bias of the dc-sample. The transcripts for hybridization
controls (the solid circle refers to BioB_3) were added to
the RNA-extracts in constant amounts before the inverse
transcription step to assess its performance. The position
of the respective Σ- and Δ-coordinates along the hook-
curve remains relatively invariant indicating that the
inverse transcription step has been performed in both
samples in comparable quality. The drastic differences in
the call rates must be therefore attributed to tissue-specific
differences of the RNA-quality.
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In parts e and f of Figure 12 we show the Σ-coordinates
and the expression measures of the selected probe sets in
both samples. Part g provides the differences (dc – scg)
between them. The log-intensity measures (Σ) and the
PMonly hook-expression values clearly reveal the larger
signal and expression level of the dc-sample. Importantly,
the PMonly-expression estimate of the BioB-hybridiza-
tion control remains invariant between the samples. This
result correctly reflects the equal amounts of BioB-tran-
scripts spiked into both samples. The difference of the Σ-
coordinates is however negative for BioB-3. This result
and the fact that the differential expression of the PMonly
estimates exceeds that of the Σ-data can be attributed to
the non-specific background contributing to the latter
data. The larger N-background in the scg-sample effec-
tively increases the respective signal. Moreover, the data
clearly show that the positive difference of the log-binding
strength of specific hybridization of most of the tran-
scripts is counterbalanced by the negative change of the
binding strength of non-specific binding (see the horizon-
tal dashed line in part e) – g) of Figure 12).

These trends partly explain the puzzling results of a recent
correlation analysis between signal intensities and the
degree of RNA-degradation [38]: Our data show, that, on
one hand, degradation of RNA increases the non-specific
background level with the consequence that the intensi-
ties of probes with small specific signal contributions
effectively increase. On the other hand, the specific bind-
ing strength decreases upon RNA-degradation with the
consequence that the signals of strongly expressed signals
decrease. The former effect mainly affects weak intensities
whereas the latter effect is more relevant for stronger total
signals. Both opposite effects contribute to the intensity of

each probe with specific weights giving rise to increased,
decreased or even unchanged total signals.

In part e – g of Figure 12 we also show MAS5 expression
estimates taken from ref. [44]. The MAS5-expression
measures of the dc-sample agree to a good approximation
with that of the hook-method (see Figure 12, part e). For
the scg-sample MAS5 however provides a considerably
larger mean expression level. As a result, the expression
differences are either much smaller in magnitude, or more
critically, even change sign compared with the hook-
results (see part g of Figure 12: dc-scg). For example, the
hybridization control BioB becomes apparently much less
expressed in the dc-sample in contrast to the hook-
method which detects essentially no change, as expected.

These qualitative discrepancies between both approaches
uncover a fundamental problem of microarray normaliza-
tion with no satisfactory solution yet (see, e.g., [45]). Note
that in their analysis the authors used MAS5 together with
global median normalization of the raw intensities [44].
The vertical bars in part b of Figure 12 indicate the median
of the log-intensity distributions. For the two considered
samples the change of the non-specific contribution
clearly dominates the observed change of the median chip
intensity resulting in a stronger median signal of the scg-
sample. The relative effect of, e.g. BioB with respect to the
median is larger for the scg-sample (see the open circles in
the figure) which gives rise to the negative differential
expression reported by MAS5. This result exemplifies the
problem with normalization methods which rescale the
individual chip intensities to global chip characteristics
such as their median or average value or use an averaged
distribution as by quantile normalization. For the partic-
ular example discussed here such methods mask the larger

Tissue-specific RNA profilingFigure 12
Tissue-specific RNA profiling. Part a) Frequency distribution of absent calls of tissue-specific total RNA hybridized on HG-
U133A arrays taken from 79 tissues and analyzed with MAS5 and hook (raw array-intensities and MAS5 data were taken from 
ref. [44]). Part b) – g) Comparison of two hybridizations with small and large absent rates (see arrows in part a): peripheral 
blood-BDCA4 dentritic cells (dc, GEO-query GSM18873) and superior cervical ganglion (scg, GEO-query GSM19012). Both 
hybridizations used the same amount of total RNA (5 μg) for synthesis of biotinylated cRNA and the same labelling protocol. 
Part b) compares the log-intensity-distributions of the PM-probes: Except the shift and widening of the distribution of the dc-
sample, one observes essentially no peculiar differences between the specimens. The median and the probe-set related values 
of BioB-3 are explicitly shown and discussed in the text. Parts c) and d) show the respective hook-plots together with the sig-
nal-density distributions. Note the striking differences: The scg-sample hybridizes much weaker with a markedly larger fraction 
of probe set with absent calls (95%) and a much steeper decay of the distribution in the mix-range of the hook (λ is the decay 
constant). The dotted curves are fits of the Langmuir model. The open symbols indicate the hook-coordinates of selected 
probe set in both preparations to illustrate the apparent expression changes from different regions of the hook (#1 to #4). The 
solid symbols refer to amplification and hybridization control probe sets. In part e) and f) the Σ-coordinates and the expression 
measures of these selected probes are explicitly shown, part g shows the respective log-differences between both samples. 
Note that the difference of the non-specific background level is negative (dashed horizontal line), whereas the difference of the 
specific binding strengths of most of the considered probe sets is positive (PMonly measures). The specific expression of the 
BioB-control is virtually invariant in both samples, as expected. Contrarily, MAS5 pretends significant expression changes of the 
BioB-control due to improper normalization (see text).
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specific signal in the dc-sample. Contrarily, the hook
method disentangles the specific and non-specific signal-
contributions with the option to scale them separately in
subsequent normalization steps.

Labelling protocol
In addition to the quality of start-RNA and the amplifica-
tion bias there are other methodological differences such
as the labelling reaction that can introduce systematic
biases. Figure 13 compares the hook characteristics of two
replicated samples of the same amount of starting RNA (5
μg) which are labelled using two different in-vitro-tran-
scription (IVT) labelling kits: the Enzo BioArray high-yield
RNA transcript labeling kit (Enzo) and the GeneChip
expression 3'-amplification kit for IVT labeling (Affy)
[8,46]. Both methods essentially follow the same experi-
mental steps. Major distinction exists in the use of Biotin-
UTP and -CTP in the former and Biotin-UTP only in the

latter method. Fluorescent labels thus attach either to C-
and U-nucleotides as well or to U-nucleotides only.

The sensitivity profiles of the N-hybridization range are
very similar for both labelling protocols with differences
of less than 20% of the respective sensitivity value. Similar
results were reported previously by using either Biotin-
UTP or Biotin-CTP [47]. The sensitivity terms additively
decompose into "binding-"contributions related to the
effective free energy of the respective base pairing; and
into a fluorescence contribution taking into account base-
specific labelling [20]. Labelling is expected to decrease
the binding contribution (because the bulky label dis-
turbs the base-base interactions) and to increase the fluo-
rescence contribution [19,20]. The obtained positional
dependent sensitivity profiles reveal that, if at all, label-
ling has only little effect.

On the other hand, the width of the hook curve and the

Hook analysis of two replicated hybridization on RAE-230 rat genome arrays which are labelled using either the Affymetrix- (left) or ENZO- (right) protocolsFigure 13
Hook analysis of two replicated hybridization on RAE-230 rat genome arrays which are labelled using either the Affymetrix- 
(left) or ENZO- (right) protocols. The Affy-protocols labels the cytosines only whereas the ENZO-protocol labels cytosines 
and uracyls as well.
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decay constant of the density distribution for the Affy-pro-
tocol slightly exceed the respective values for the Enzo-
labelling at identical percentages of absent probes (~33%)
and at identical optical background levels in both prepa-
rations. The observed differences indicate the slightly
smaller amount of non-specific binding and the stronger
specific binding of the former preparation. Hence, the
Affy-protocol slightly better performs then the previous
Enzo-labeling because it reduces the non-specific back-
ground level and increases the effective binding strength
for specific binding; this way, giving rise to both, a better
specificity and sensitivity of the method [26] in agreement
with the results of special benchmark experiments [46].

The molecular origin of the observed differences is pres-
ently not clear and requires further analyses. Note how-
ever that the Enzo-protocol introduces a significantly
higher fraction of biotinylated nucleotides with poten-
tially deteriorated binding affinities which provides a ten-
tative explanation of the observed trends. The stronger
specific binding caused by the Affy-protocol is paralleled
by stronger saturation effects at high intensities which, in
turn, give rise to systematic differences between the S-sen-
sitivity profiles of both preparations: The profiles of cyto-
sine (C) and guanine (G) shift systematically towards
smaller sensitivities whereas the T- and especially the A-
profiles shift into the opposite direction. This vertical
"compression" of the profiles was previously observed
[20]. It reflects the fact that stronger base Watson-Crick
pairings of the C- and G-nucleotides are, on the average
over all probes, more affected by saturation than pairing
of the T and especially A which form weaker bonds. Note
also that the saturation effect is much smaller for the MM
as expected. These results reveal that the hook-algorithm
only incompletely corrects the individual probe intensi-
ties for saturation effects probably because the intensity
asymptote upon complete saturation is not a chip con-
stant but a sequence- and thus probe-specific property
owing to washing effects [29,48].

Replacing RNA targets with DNA
Microarray technology takes advantage of either of two
types of chemical entities as the labelled target, RNA or
DNA, considered to be virtually equivalent for the pur-
pose of expression analysis. RNA is usually hybridized on
"conventional" expression arrays whereas especially
newer GeneChip generations such as exon- and tiling-
expression arrays as well as genomic SNP- and re-sequenc-
ing-arrays use DNA-targets. Figure 14 compares selected
hook characteristics of both options to illustrate the effect
of the two binding "chemistries" using the same start
RNA-extract prepared from Jurkat-cells (chip data are
taken from [49]). cRNA was prepared by standard one
round in-vitro transcription (see above) whereas cDNA
was obtained by means of a different protocol (see [49]

and references cited therein). Besides the chemical entity
of the targets both protocols differ with respect to prepa-
ration steps such as fragmentation (chemical versus enzy-
matic), labelling ("during isothermal amplification"
versus "after fragmentation") and the position of the label
(throughout the sequence versus end-labelled).

Inspection of the hook-curves reveals several effects
caused by the substitution of RNA by DNA: Firstly, the
sensitivity correction to a much less extent affects the
hook-curve of the DNA-hybridization (compare the cor-
rected and raw hooks). For example, the width of the N-
range of the raw RNA-hook (ΔΣ(N) ≈ 0.7) considerably
exceeds that of the respective DNA-hook (ΔΣ(N) ≈ 0.3)
whereas after correction the N-widths shrink to virtually
identical values in both cases (ΔΣ(N) ≈ 0.2). Secondly,
DNA/DNA hybridisation shifts the whole hook, and espe-
cially the background level, to smaller abscissa values
indicating a smaller mean intensity level; thirdly, substitu-
tion of RNA by DNA slightly increases the width of the
hook (β) and the decay constant of the density distribu-
tion in the S-range (λ); and fourthly, it slightly reduces the
vertical dimension of the hook (α). Moreover, also the
sensitivity profiles indicate characteristic differences:
Especially, the profiles for Guanine (G) provide the largest
contributions for DNA-binding to DNA-probes whereas
the Cytosine-profiles are the largest in most cases for RNA-
binding.

The different target-entities give rise to D(NA)/R(NA)-
and D/D-base pairings in the target/probe-duplexes and
to R/R- and D/D-interactions for bulk duplexing of the
targets in solution. The thermodynamic stability of spe-
cific 27 meric oligomer-duplexes was found to follow the
order D/D < D/R < R/R with free energy ratios (37°C) of
ΔG(D/D)/ΔG(D/R) ≈ 0.9 and ΔG(R/R)/ΔG(D/R) ≈ 1.3
[50]. Note that the PM/MM-gain α ≈ log(s) approximately
refers to the free energy increment of one Watson-Crick
pairing in 25 meric probe/target duplexes if one neglects
the specific mismatch contribution. The decreased PM/
MM-gain (α) of the DNA-hybridization thus corresponds
to the weaker association of D/D -versus – D/R where the
ratio α (D/D)/α (D/R) ≈ 0.85 ± 0.05 roughly agrees with
the expected free energy ratio.

The slightly larger width of the DNA-hook indicates the
smaller non-specific binding strength of the D/D-
duplexes. This difference and the larger variability of the
RNA-hybridization were attributed to relatively-stable,
mismatched "G•u-wobble" base pairings in the non-spe-
cific R/D-duplexes (the lower case letter refers to the tar-
get, the upper case letter to the probe) which give rise to
less specific binding and stronger scattering of the back-
ground compared with D/D hybridizations without such
relatively-stable mismatched pairings [49]. The latter D/
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D-hybridization is consequently more specific than the R/
D-hybridization as indicated by the larger decay constant
(see Figure 14) [26].

Also the sensitivity profiles indicate systematic differences
of base-pair interactions in both hybridizations. Particu-
larly, the relative values of the G- and A-profiles for the D/
D-duplexes are considerably larger than that for the D/R-
duplexes. Exactly this trend is expected from the relative
interaction strength of canonical Watson-Crick pairings in
the respective duplexes: D/D-pairings are symmetrical
with respect to "bond-reversals" (i.e. C•g≈ G•c > A•t≈
T•a) in contrast to "unsymmetrical" D/R-interactions
(C•g > G•c≈ T•a > A•u) [19,20,50-52]. Hence, for D/D-
duplexes one expects the relative enhancement of the G
and A sensitivity terms compared with those in the D/R
duplexes in agreement with the observed profiles.

Note however that the sensitivity profiles refer to effective
binding strengths which include surface and bulk interac-
tions as well [26,53]. Such effects give rise to specific dif-
ferences between the S- and N-profiles especially of the
RNA-preparation which implies relative strong R/R-inter-
actions in the respective bulk duplexes.

4. Summary and Conclusion
We presented a new method of microarray data analysis
based on a physical model. This so-called hook method
pre-processes the raw intensity data for further down-
stream analyses on one hand, and, on the other hand,
provides chip characteristics with potential applications
in hybridization quality control and array normalization.

Hook-characteristics of cRNA (left) and cDNA (right) hybridizations prepared from of a Jurkat-cell RNA-extract on HG-U133Av2 chips (raw data are taken from refFigure 14
Hook-characteristics of cRNA (left) and cDNA (right) hybridizations prepared from of a Jurkat-cell RNA-extract on HG-
U133Av2 chips (raw data are taken from ref. [49]).

� �
Page 23 of 26
(page number not for citation purposes)



Algorithms for Molecular Biology 2008, 3:11 http://www.almob.org/content/3/1/11
In this publication we illustrate the diagnostic potential of
the hook-method by means of different chip- and tran-
script-related characteristics in various situations:

- Using the data of spiked-in and dilution experiments it
was shown that our single-chip approach provides accu-
rate and precise expression measures over three orders of
magnitude in units of the specific binding strength of the
transcripts. The correction for saturation and probe-spe-
cific non-specific background assures linearity between
the input (transcript concentration) and output (expres-
sion degree) measures. Among the four alternative meas-
ures, PMonly and PM-MM-difference measures perform
best, but also the measure extracted from the S/N-ratio
provides satisfactory results.

- The "present/absent"-concept of detection calls origi-
nally introduced by Affymetrix provides straightforward,
simple and helpful information which relates the signal of
each transcript to the detection limit of the particular
hybridization and, in addition characterizes the mean
"presence" of transcripts in the hybridization solution.
The hook-method calculates an analogous measure based
on the break-criterion reflecting the onset of specific
hybridization. This criterion implicitly takes into account
the different correlations between the PM and MM probes
upon non-specific and specific hybridization and thus it
"dynamically" adapts to each particular hybridization. We
have shown that this criterion well classifies into present
and absent transcripts using data taken from the two-spe-
cies yeast 2.0 array and from the golden spike experiment
with known batches of "empty" probes.

- The hook method performs reasonably well by compar-
ing expression data of the same origin between two chip
generations (HG-U133A and HG-U133 plus 2.0). The
hook-diagnosis suggests that subtle differences of the
hybridization law due to details of chip-manufacturing
and/or -handling upon preparation give rise to slightly
biased expression data between different array types and/
or different batches of chips of the same type.

- The re-assembly and filtering of probe sets based on
improved genomic information increases the amount of
probe sets detected as present ones. This result in turn
shows that the hook-calling criterion applied to the origi-
nal probe set definitions partly removes the "bad"
(because of inconsistent probe assignments) probe sets
from further analysis. The mean hybridization character-
istics remain virtually unaffected by the redefinition step
of the probe sets. The consequences of probe set-updating
for the expression measures on transcript level will be
studied separately.

- The effect of 3'-biased RNA amplification gives rise to the
progressively decreased specific hybridization of probes
with increasing distance of their position relative to the 3'-
end of the transcript which can be detected by hook-anal-
ysis using appropriate subsets of probes nearer to the 3'-
and the 5'-end, respectively. This analysis properly differ-
entiates between specific and non-specific hybridization
where the latter one is, per definition, not affected by the
3'-biased intensity effect. Our data show that overall 3'/5'-
signal ratios not considering the difference between spe-
cific and non-specific binding can lead to misinterpreta-
tions of the amplification bias.

- Hook analysis reveals detailed insights into conse-
quences of tissue-specific RNA-quality differences on
hybridization and expression measures. Degradation of
RNA increases the fraction of absent probes paralleled by
the decrease of the specific binding strength and counter-
balanced by the increase of non-specific background
hybridization. Improper separation of both opposite
effects can pretend expression changes into the wrong
direction. We suggest that the chip characteristics pro-
vided by the hook method can serve as calibration bench-
marks for alternative normalization algorithms which
take into account the different behaviour of the specific
and non-specific signal in samples of varying RNA-qual-
ity.

- The variation of the labelling protocol and substitution
of RNA-targets by DNA modifies the probe/target interac-
tions. Hook analysis shows for example that DNA-targets,
and to a smaller degree, the Affy-labeling protocol (no
labelling of cytosines) improve the specificity of the
method compared with RNA-targets and the previous
ENZO-protocol, respectively. For DNA-targets the
sequence correction is of much smaller impact because of
smaller sequence-induced variability of the raw intensi-
ties.

In summary, sequence correction and especially the quan-
tification of the non-specific background contribution for
each probe enable subtle diagnosis of the hybridization
on each array. To extract this information the hook
method combines the intensities of each PM/MM-probe
pair and utilizes the different properties of both probe
types. Here the MM behave like "weak-affine" PM and
serve as intrinsic reference for the PM over the whole
potential concentration range of the transcripts. We illus-
trated that this intrinsic referencing might be extremely
useful for dealing with practical issues of expression anal-
ysis such as RNA-quality, hybridization control and cali-
bration of expression measures. This publication outlined
several potential applications of the method which will be
addressed in our future work.
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